
glow Documentation
Release 2.1.0-SNAPSHOT

Glow Project

Apr 22, 2024

CONTENTS

1 Introduction to Glow 3

2 Getting Started 5
2.1 Running Locally . 5
2.2 Getting started on Databricks . 6
2.3 Notebooks embedded in the docs . 9

3 GWAS Tutorial 11
3.1 1. Quality Control . 11
3.2 2. Glow Whole Genome Regression (GloWGR) . 11
3.3 3. Regression . 12

4 Customizing Glow 13
4.1 Customizing the Databricks environment . 13
4.2 Maintaining private patches on top of Glow . 17

5 Variant Data Manipulation 19
5.1 Data Simulation . 19
5.2 Read and Write VCF, Plink, and BGEN with Spark . 20
5.3 Read Genome Annotations (GFF3) as a Spark DataFrame . 24
5.4 Create a Genomics Delta Lake . 26
5.5 Variant Quality Control . 27
5.6 Sample Quality Control . 29
5.7 Liftover . 31
5.8 Variant Normalization . 33
5.9 Split Multiallelic Variants . 36
5.10 Merging Variant Datasets . 38
5.11 Utility Functions . 39

6 Tertiary Analysis 43
6.1 The Pipe Transformer for Parallelizing Command-Line Bioinformatics Tools 43
6.2 Python Statistics Libraries . 46
6.3 GloWGR: Whole Genome Regression . 47
6.4 GloWGR: Genome-Wide Association Study (GWAS) Regression Tests 60

7 Troubleshooting 65

8 Contributing 67
8.1 Raise Issues . 67
8.2 Contribute to the codebase . 67

i

9 Blog Posts 69
9.1 Introducing GloWGR: An industrial-scale, ultra-fast and sensitive method for genetic association studies 69
9.2 Glow 0.4 Enables Integration of Genomic Variant and Annotation Data 73
9.3 Glow 0.3.0 Introduces Several New Large-Scale Genomic Analysis Features 80
9.4 Streamlining Variant Normalization on Large Genomic Datasets . 85

10 Additional Resources 91
10.1 Databricks notebooks . 91
10.2 External blog posts . 91

11 Python API 93
11.1 Glow Top-Level Functions . 93
11.2 PySpark Functions . 93
11.3 GloWGR . 93

ii

glow Documentation, Release 2.1.0-SNAPSHOT

Glow is an open-source toolkit for working with genomic data at biobank-scale and beyond. The toolkit is natively
built on Apache Spark, the leading unified engine for big data processing and machine learning, enabling genomics
workflows to scale to population levels.

CONTENTS 1

https://projectglow.io/
https://github.com/projectglow/glow

glow Documentation, Release 2.1.0-SNAPSHOT

2 CONTENTS

CHAPTER

ONE

INTRODUCTION TO GLOW

Genomics data has been doubling every seven months globally. It has reached a scale where genomics has become
a big data problem. However, most tools for working with genomics data run on single nodes and will not scale.
Furthermore, it has become challenging for scientists to manage storage, analytics and sharing of public data.

Glow solves these problems by bridging bioinformatics and the big data ecosystem. It enables bioinformaticians and
computational biologists to leverage best practices used by data engineers and data scientists across industry.

Glow is built on Apache Spark and Delta Lake, enabling distributed computation on and distributed storage of genotype
data. The library is backwards compatible with genomics file formats and bioinformatics tools developed in academia,
enabling users to easily share data with collaborators.

When combined with Delta Lake, Glow solves the “n+1” problem in genomics, allowing continuous integration of and
analytics on whole genomes without data freezes.

Glow is used to:

• Ingest genotype data into a data lake that acts as a single source of truth.

• Perform joint-genotyping of genotype data on top of delta-lake.

• Run quality control, statistical analysis, and association studies on population-scale datasets.

• Build reproducible, production-grade genomics data pipelines that will scale to tens of trillions of records.

3

https://spark.apache.org/docs/latest/api/python/index.html
https://delta.io/

glow Documentation, Release 2.1.0-SNAPSHOT

Glow features:

• Genomic datasources: To read datasets in common file formats such as VCF, BGEN, and Plink into Spark
DataFrames.

• Genomic functions: Common operations such as computing quality control statistics, running regression tests,
and performing simple transformations are provided as Spark functions that can be called from Python, SQL,
Scala, or R.

• Data preparation building blocks: Glow includes transformations such as variant normalization and lift over to
help produce analysis ready datasets.

• Integration with existing tools: With Spark, you can write user-defined functions (UDFs) in Python, R, SQL, or
Scala. Glow also makes it easy to run DataFrames through command line tools.

• Integration with other data types: Genomic data can generate additional insights when joined with data sets such
as electronic health records, real world evidence, and medical images. Since Glow returns native Spark SQL
DataFrames, its simple to join multiple data sets together.

• GloWGR, a distributed version of the regenie method, rewritten from the ground up in Python.

4 Chapter 1. Introduction to Glow

https://rgcgithub.github.io/regenie/

CHAPTER

TWO

GETTING STARTED

2.1 Running Locally

Glow requires Apache Spark 3.4 or 3.5.

Python

Scala

If you don’t have a local Apache Spark installation, you can install it from PyPI:

pip install pyspark==3.5.0

or download a specific distribution.

Install the Python frontend from pip:

pip install glow.py

and then start the Spark shell with the Glow maven package:

./bin/pyspark --packages io.projectglow:glow-spark3_2.12:2.0.1 --conf spark.hadoop.io.
→˓compression.codecs=io.projectglow.sql.util.BGZFCodec

To start a Jupyter notebook instead of a shell:

PYSPARK_DRIVER_PYTHON=jupyter PYSPARK_DRIVER_PYTHON_OPTS=notebook ./bin/pyspark --
→˓packages io.projectglow:glow-spark3_2.12:2.0.1 --conf spark.hadoop.io.compression.
→˓codecs=io.projectglow.sql.util.BGZFCodec

And now your notebook is glowing! To access the Glow functions, you need to register them with the Spark session.

import glow
spark = glow.register(spark)
df = spark.read.format('vcf').load(path)

If you don’t have a local Apache Spark installation, download a specific distribution.

Start the Spark shell with the Glow maven package:

./bin/spark-shell --packages io.projectglow:glow-spark3_2.12:2.0.1 --conf spark.hadoop.
→˓io.compression.codecs=io.projectglow.sql.util.BGZFCodec

To access the Glow functions, you need to register them with the Spark session.

5

https://spark.apache.org/downloads.html
http://spark.apache.org/docs/latest/rdd-programming-guide.html#using-the-shell
https://spark.apache.org/downloads.html
http://spark.apache.org/docs/latest/rdd-programming-guide.html#using-the-shell

glow Documentation, Release 2.1.0-SNAPSHOT

import io.projectglow.Glow
val sess = Glow.register(spark)
val df = sess.read.format("vcf").load(path)

2.2 Getting started on Databricks

Databricks makes it simple to run Glow on Amazon Web Services (AWS), Microsoft Azure, and Google Cloud Platform
(GCP).

You can install the Glow Scala and Python artifacts as Maven and PyPI cluster libraries.

After you’ve set up a cluster and installed Glow, you can follow these steps to see how it works:

1. Sync the Glow notebooks via Repos

1. Fork the Glow github repo.

2. Clone your fork to your Databricks workspace using Repos (step-by-step guide).

3. The notebooks are located under docs/source/_static.

2. Create automated jobs

To build an automated Glow workflow in your Databricks workspace, please follow these steps, which simulate data
and then run the Glow GWAS tutorial

1. Configure the Databricks CLI, authenticating via Databricks personal access token (docs).

2. Create a directory in your Databricks workspace,

databricks workspace mkdirs /Repos/test

3. Import source files from your fork of the Glow Github repository to this directory using repos,

databricks repos create --url https://github.com/<github_profile>/glow --provider gitHub␣
→˓--path /Repos/test/glow

4. Switch to the branch of Glow that you are working on using repos,

databricks repos update --branch master --path /Repos/test/glow

5. Create a workflow using jobs,

6 Chapter 2. Getting Started

https://docs.databricks.com/en/libraries/cluster-libraries.html
https://github.com/projectglow/glow
https://docs.databricks.com/repos/sync-remote-repo.html
https://docs.databricks.com/dev-tools/cli/index.html

glow Documentation, Release 2.1.0-SNAPSHOT

• Azure GWAS tutorial

databricks jobs create --json-file docs/dev/glow-gwas-tutorial-azure.json

• AWS GWAS tutorial

databricks jobs create --json-file docs/dev/glow-gwas-tutorial-aws.json

6. Take the job id that is returned, and run the job,

databricks jobs run-now --job-id <job id>

7. Go to the Databricks web application and view the output of the job,

8. Epilogue

The full set of notebooks in Glow undergo nightly integration testing orchestrated by CircleCI (example output) using
the latest version of the Glow Docker container on Databricks. CircleCI kicks off these notebooks from the Databricks
command line interface (CLI) via a python script, which contains the above steps. The workflow is defined in this

2.2. Getting started on Databricks 7

https://app.circleci.com/pipelines/github/projectglow/glow/3050/workflows/c8a47149-2dae-406e-8e0c-cbaf21de715c/jobs/9424
https://github.com/projectglow/glow/blob/master/docs/dev/run-nb-test.py

glow Documentation, Release 2.1.0-SNAPSHOT

configuration json template. And the output is shown below. You can adapt these as you build your own production
jobs.

Important: These notebooks must be run in order!

As you build out your pipelines please consider the following points,

Important:

• Start small. Experiment on individual variants, samples or chromosomes.

• Steps in your pipeline might require different cluster configurations.

Tip:

• Use compute-optimized virtual machines to read variant data from cloud object stores.

8 Chapter 2. Getting Started

https://github.com/projectglow/glow/blob/master/docs/dev/multitask-integration-test-config.json

glow Documentation, Release 2.1.0-SNAPSHOT

• Use Delta Cache accelerated virtual machines to query variant data.

• Use memory-optimized virtual machines for genetic association studies.

• The Glow Pipe Transformer supports parallelization of deep learning tools that run on GPUs.

2.3 Notebooks embedded in the docs

Documentation pages are accompanied by embedded notebook examples. Most code in these notebooks can be run
on Spark and Glow alone, but functions such as display() or dbutils() are only available on Databricks. See
Databricks notebooks for more info.

These notebooks are located in the Glow github repository here and are tested nightly end-to-end. They include note-
books to define constants such as the number of samples to simulate and the output paths for each step in the pipeline.
Notebooks that define constants are %run at the start of each notebook in the documentation. Please see Data Simulation
to get started.

2.3. Notebooks embedded in the docs 9

https://github.com/projectglow/glow/blob/master/docs/source/_static/zzz_GENERATED_NOTEBOOK_SOURCE/

glow Documentation, Release 2.1.0-SNAPSHOT

10 Chapter 2. Getting Started

CHAPTER

THREE

GWAS TUTORIAL

This quickstart tutorial shows how to perform genome-wide association studies using Glow.

Glow implements a distributed version of the Regenie method. Regenie’s domain of applicability falls in analyzing
data with extreme case/control imbalances, rare variants and/or diverse populations. Therefore it is suited for working
with population-scale biobank exome or genome sequencing data.

Tip: Other bioinformatics libraries for GWAS can be distributed using the Glow Pipe Transformer.

You can view html versions of the notebooks and download them from the bottom of this page.

The notebooks are written in Python, with some visualization in R.

Tip: We recommend running the Data Simulation notebooks first to prepare data for this tutorial before trying with
your own data.

Important: Please sort phenotypes and covariates by sample ID in the same order as genotypes.

3.1 1. Quality Control

The first notebook in this series prepares data by performing standard quality control procedures on simulated genotype
data.

3.2 2. Glow Whole Genome Regression (GloWGR)

GloWGR implements a distributed version of the Regenie method. Please review the Regenie paper in Nature Genetics
and the Regenie Github repo before implementing this method on real data.

11

https://rgcgithub.github.io/regenie/
https://doi.org/10.1038/s41588-021-00870-7
https://github.com/rgcgithub/regenie

glow Documentation, Release 2.1.0-SNAPSHOT

3.3 3. Regression

The GloWGR notebook calculated offsets that are used in the genetic association study below to control for population
structure and relatedness.

3.3.1 Quality control

<div class='embedded-notebook'> How
to run a notebook Get
notebook link</p> <div class='embedded-notebook-container'> <div class='loading-spinner'></div>
<iframe src="./_static/notebooks/tertiary/1_quality_control.html" id='-8573135091383511853' height="1000px"
width="100%" style="overflow-y:hidden;" scrolling="no"></iframe> </div> </div>

3.3.2 Quantitative glow whole genome regression

<div class='embedded-notebook'> How to
run a notebook Get note-
book link</p> <div class='embedded-notebook-container'> <div class='loading-spinner'></div> <iframe
src="./_static/notebooks/tertiary/2_quantitative_glowgr.html" id='-2765094408473522466' height="1000px"
width="100%" style="overflow-y:hidden;" scrolling="no"></iframe> </div> </div>

3.3.3 Linear regression

<div class='embedded-notebook'> How to
run a notebook Get note-
book link</p> <div class='embedded-notebook-container'> <div class='loading-spinner'></div> <iframe
src="./_static/notebooks/tertiary/3_linear_gwas_glow.html" id='-2978622225151365946' height="1000px"
width="100%" style="overflow-y:hidden;" scrolling="no"></iframe> </div> </div>

3.3.4 Binary glow whole genome regression

<div class='embedded-notebook'> How
to run a notebook Get
notebook link</p> <div class='embedded-notebook-container'> <div class='loading-spinner'></div>
<iframe src="./_static/notebooks/tertiary/4_binary_glowgr.html" id='-2457636584118018592' height="1000px"
width="100%" style="overflow-y:hidden;" scrolling="no"></iframe> </div> </div>

3.3.5 Logistic regression

<div class='embedded-notebook'> How to
run a notebook Get note-
book link</p> <div class='embedded-notebook-container'> <div class='loading-spinner'></div> <iframe
src="./_static/notebooks/tertiary/5_logistic_gwas_glow.html" id='-7536891393412685606' height="1000px"
width="100%" style="overflow-y:hidden;" scrolling="no"></iframe> </div> </div>

12 Chapter 3. GWAS Tutorial

CHAPTER

FOUR

CUSTOMIZING GLOW

Glow is designed to be extensible and modifiable to fit your workloads.

4.1 Customizing the Databricks environment

Glow users often want to include additional resources inside the Databricks node environment. For instance, variant
normalization requires a reference genome, variant liftover requires a chain file, and the pipe transformer can be used
to integrate with command line tools. You can ensure that these resources are available on every node in a cluster by
using Databricks Container Services or init scripts.

4.1.1 Init scripts

Init scripts are useful for downloading small resources to a cluster. For example, the following script downloads a
liftover chain file from DBFS:

mkdir -p /databricks/chain-files
cp /dbfs/mnt/genomics/my-chain-file.chain /databricks/chain-files

The script is guaranteed to run on every node in a cluster. You can then rely on the chain file for variant liftover.

4.1.2 Databricks Container Services

To avoid spending time running setup commands on each node in a cluster, we recommend packaging more complex
dependencies with Databricks Container Services.

For example, the following Dockerfile based on DBR 14.3 LTS includes Glow, various bioinformatics tools, and a
liftover chain file. You can modify this file to install whatever resources you require.

FROM databricksruntime/standard:14.3-LTS

ENV DEBIAN_FRONTEND noninteractive

===== Set up python environment␣
→˓==

RUN /databricks/python3/bin/pip install awscli databricks-cli --no-cache-dir

===== Set up Azure CLI =====

(continues on next page)

13

https://docs.databricks.com/en/compute/custom-containers.html
https://docs.databricks.com/en/init-scripts/index.html
https://docs.databricks.com/en/init-scripts/index.html
https://docs.databricks.com/en/compute/custom-containers.html

glow Documentation, Release 2.1.0-SNAPSHOT

(continued from previous page)

RUN apt-get update && apt-get install -y \
curl \
lsb-release \
gnupg \
tzdata

RUN curl -sL https://aka.ms/InstallAzureCLIDeb | bash

===== Set up base required libraries␣
→˓===

RUN apt-get update && apt-get install -y \
apt-utils \
build-essential \
git \
apt-transport-https \
ca-certificates \
cpanminus \
libpng-dev \
zlib1g-dev \
libbz2-dev \
liblzma-dev \
perl \
perl-base \
unzip \
curl \
gnupg2 \
software-properties-common \
jq \
libjemalloc2 \
libjemalloc-dev \
libdbi-perl \
libdbd-mysql-perl \
libdbd-sqlite3-perl \
zlib1g \
zlib1g-dev \
libxml2 \
libxml2-dev

===== Set up VEP environment␣
→˓===

ENV OPT_SRC /opt/vep/src
ENV PERL5LIB $PERL5LIB:$OPT_SRC/ensembl-vep:$OPT_SRC/ensembl-vep/modules
RUN cpanm DBI && \

cpanm Set::IntervalTree && \
cpanm JSON && \
cpanm Text::CSV && \
cpanm Module::Build && \
cpanm PerlIO::gzip && \
cpanm IO::Uncompress::Gunzip

(continues on next page)

14 Chapter 4. Customizing Glow

glow Documentation, Release 2.1.0-SNAPSHOT

(continued from previous page)

RUN mkdir -p $OPT_SRC
WORKDIR $OPT_SRC
RUN git clone https://github.com/Ensembl/ensembl-vep.git
WORKDIR ensembl-vep

The commit is the most recent one on release branch 100 as of July 29, 2020

RUN git checkout 10932fab1e9c113e8e5d317e1f668413390344ac && \
perl INSTALL.pl --NO_UPDATE -AUTO a && \
perl INSTALL.pl -n -a p --PLUGINS AncestralAllele && \
chmod +x vep

===== Set up samtools␣
→˓==

ENV SAMTOOLS_VERSION=1.9

WORKDIR /opt
RUN wget https://github.com/samtools/samtools/releases/download/${SAMTOOLS_VERSION}/
→˓samtools-${SAMTOOLS_VERSION}.tar.bz2 && \

tar -xjf samtools-1.9.tar.bz2
WORKDIR samtools-1.9
RUN ./configure --without-curses && \

make && \
make install

ENV PATH=${DEST_DIR}/samtools-{$SAMTOOLS_VERSION}:$PATH

===== Set up htslib␣
→˓==
access htslib tools from the shell, for example,
%sh
/opt/htslib-1.9/tabix
/opt/htslib-1.9/bgzip

WORKDIR /opt
RUN wget https://github.com/samtools/htslib/releases/download/${SAMTOOLS_VERSION}/htslib-
→˓${SAMTOOLS_VERSION}.tar.bz2 && \

tar -xjvf htslib-1.9.tar.bz2
WORKDIR htslib-1.9
RUN ./configure --without-curses && \

make && \
make install

===== Set up MLR dependencies␣
→˓==

ENV QQMAN_VERSION=1.0.6
RUN /databricks/python3/bin/pip install qqman==$QQMAN_VERSION

(continues on next page)

4.1. Customizing the Databricks environment 15

glow Documentation, Release 2.1.0-SNAPSHOT

(continued from previous page)

===== plink␣
→˓==
#install both plink 1.07 and 1.9
#access plink from the shell from,
#v1.07
#/opt/plink-1.07-x86_64/plink --noweb
#v1.90
#/opt/plink --noweb

WORKDIR /opt
RUN wget http://zzz.bwh.harvard.edu/plink/dist/plink-1.07-x86_64.zip && \

unzip plink-1.07-x86_64.zip
RUN wget http://s3.amazonaws.com/plink1-assets/plink_linux_x86_64_20200616.zip && \

unzip plink_linux_x86_64_20200616.zip

===== Reset current directory␣
→˓==

WORKDIR /root

===== Set up liftOver (used by standard Glow examples)␣
→˓===

RUN mkdir /opt/liftover
RUN curl https://raw.githubusercontent.com/broadinstitute/gatk/master/scripts/funcotator/
→˓data_sources/gnomAD/b37ToHg38.over.chain --output /opt/liftover/b37ToHg38.over.chain

===== Set up bedtools as desired by many Glow users␣
→˓==

ENV BEDTOOLS_VERSION=2.30.0
ENV PATH=/databricks/python3/bin:$PATH
RUN cd /opt && git clone --depth 1 --branch v${BEDTOOLS_VERSION} https://github.com/
→˓arq5x/bedtools2.git bedtools-${BEDTOOLS_VERSION}
RUN cd /opt/bedtools-${BEDTOOLS_VERSION} && make

Install Glow
RUN mkdir /databricks/jars
RUN wget -P /databricks/jars https://github.com/projectglow/glow/releases/download/v2.0.
→˓0/glow-spark3-assembly-2.0.0.jar
RUN wget https://github.com/projectglow/glow/releases/download/v2.0.0/glow.py-2.0.0-py3-
→˓none-any.whl && /databricks/python3/bin/pip install glow.py-2.0.0-py3-none-any.whl

16 Chapter 4. Customizing Glow

glow Documentation, Release 2.1.0-SNAPSHOT

4.2 Maintaining private patches on top of Glow

Some organizations wish to maintain forks of Glow with some private patches for non-standard configuration or during
feature development. For this pattern, we recommend the following git workflow. We assume that oss refers to the
open source Glow repository <https://github.com/projectglow/glow>_ and origin refers to your fork.

1. Set up the initial branch

If you use Github, you can use the fork button to start your repository. In a pure git workflow, you can clone the open
source repository

git clone --origin oss git@github.com:projectglow/glow.git
git remote add origin <your-repository-url>

2. Make changes

You can use whatever workflow you want, for example merging pull requests or pushing directly.

3. Squash changes before pulling open source changes

Before pulling open source changes, we recommend squashing the private patches to simplify managing merge con-
flicts.

git fetch oss main
git reset --soft $(git merge-base HEAD oss/main)
git commit --edit -m"$(git log --format=%B --reverse HEAD..HEAD@{1})"

4. Rebase and push

Note that since git history has been rewritten, you must force push to the remote repository. You may want to back up
changes in a separate branch before proceeding.

git rebase oss/main
git push -f origin

4.2. Maintaining private patches on top of Glow 17

glow Documentation, Release 2.1.0-SNAPSHOT

18 Chapter 4. Customizing Glow

CHAPTER

FIVE

VARIANT DATA MANIPULATION

Glow offers functionalities to extract, transform and load (ETL) genomic variant data into Spark DataFrames, enabling
manipulation, filtering, quality control and transformation between file formats.

5.1 Data Simulation

These data simulation notebooks generate phenotypes, covariates and genotypes at a user-defined scale. This dataset
can be used for integration and scale-testing.

The variables n_samples and n_variants for defining this scale are in the notebook 0_setup_constants_glow.
This notebook is %run from the notebooks below using its relative path. The notebook is located in the Glow github
repository here.

5.1.1 Simulate Covariates & Phenotypes

This data simulation notebooks uses Pandas to simulate quantitative and binary phenotypes and covariates.

Notebook

<div class='embedded-notebook'> How to run
a notebook Get
notebook link</p> <div class='embedded-notebook-container'> <div class='loading-spinner'></div>
<iframe src="../_static/notebooks/etl/1_simulate_covariates_phenotypes_offset.html" id='3813193115357162289'
height="1000px" width="100%" style="overflow-y:hidden;" scrolling="no"></iframe> </div> </div>

5.1.2 Simulate Genotypes

This data simulation notebook loads variant call format (VCF) files from the 1000 Genomes Project, and returns a Delta
Lake table with simulated genotypes, maintaining hardy-weinberg equilibrium and allele frequency for each variant.

19

https://github.com/projectglow/glow/blob/master/docs/source/_static/zzz_GENERATED_NOTEBOOK_SOURCE/0_setup_constants_glow.py

glow Documentation, Release 2.1.0-SNAPSHOT

Notebook

<div class='embedded-notebook'> How
to run a notebook Get
notebook link</p> <div class='embedded-notebook-container'> <div class='loading-spinner'></div>
<iframe src="../_static/notebooks/etl/2_simulate_delta_pvcf.html" id='-6224674175732262750' height="1000px"
width="100%" style="overflow-y:hidden;" scrolling="no"></iframe> </div> </div>

5.2 Read and Write VCF, Plink, and BGEN with Spark

Glow makes it possible to read and write variant data at scale using Spark SQL.

Tip: This topic uses the terms “variant” or “variant data” to refer to single nucleotide variants and short indels.

5.2.1 VCF

You can use Spark to read VCF files just like any other file format that Spark supports through the DataFrame API
using Python, R, Scala, or SQL.

df = spark.read.format("vcf").load(path)
assert_rows_equal(df.select("contigName", "start").head(), Row(contigName='17',␣
→˓start=504217))

The returned DataFrame has a schema that mirrors a single row of a VCF. Information that applies to an entire variant
(SNV or indel), such as the contig name, start and end positions, and INFO attributes, is contained in columns of the
DataFrame. The genotypes, which correspond to the GT FORMAT fields in a VCF, are contained in an array with one
entry per sample. Each entry is a struct with fields that are described in the VCF header.

The path that you provide can be the location of a single file, a directory that contains VCF files, or a Hadoop glob
pattern that identifies a group of files. Sample IDs are not included by default. See the parameters table below for
instructions on how to include them.

You can control the behavior of the VCF reader with a few parameters. All parameters are case insensitive.

Param-
eter

Type De-
fault

Description

includeSampleIdsbooleantrue If true, each genotype includes the name of the sample ID it belongs to. Sample names
increase the size of each row, both in memory and on storage.

flattenInfoFieldsbooleantrue If true, each info field in the input VCF will be converted into a column in the output
DataFrame with each column typed as specified in the VCF header. If false, all info fields
will be contained in a single column with a string -> string map of info keys to values.

validationStringencystring silentControls the behavior when parsing a malformed row. If silent, the row will be dropped
silently. If lenient, the row will be dropped and a warning will be logged. If strict,
an exception will be thrown and reading will fail.

Note: Starting from Glow 0.4.0, the splitToBiallelic option for the VCF reader no longer exists. To split multi-
allelic variants to biallelics use the split_multiallelics transformer after loading the VCF.

20 Chapter 5. Variant Data Manipulation

glow Documentation, Release 2.1.0-SNAPSHOT

Note: Glow includes a VCF reader that uses htsjdk for initial parsing as well as a reader that parses VCF lines to Spark
rows directly.

As of release 1.0.0, the direct reader is enabled by default. To use the htsjdk based reader, set the Spark config io.
projectglow.vcf.fastReaderEnabled to false.

Important: The VCF reader uses the 0-start, half-open (zero-based) coordinate system. This means that the start
values in the DataFrame will be 1 lower than the values that appear in the VCF file. For instance, if a variant has a POS
value of 10 in a VCF file, the start column in the DataFrame will contain the value 9. When writing to a VCF file,
Glow converts positions back to a 1-based coordinate system as required by the VCF specification.

You can save a DataFrame as a VCF file, which you can then read with other tools. To write a DataFrame as a single
VCF file specify the format "bigvcf":

df.write.format("bigvcf").save(path)

The file extension of the output path determines which, if any, compression codec should be used. For instance, writing
to a path such as /genomics/my_vcf.vcf.bgz will cause the output file to be block gzipped.

If you’d rather save a sharded VCF where each partition saves to a separate file:

df.write.format("vcf").save(path)

To control the behavior of the sharded VCF writer, you can provide the following option:

Pa-
ram-
eter

Type De-
fault

Description

compressionstring n/a A compression codec to use for the output VCF file. The value can be the full name of a
compression codec class (for example GzipCodec) or a short alias (for example gzip). To
use the block gzip codec, specify bgzf.

For both the single and sharded VCF writer, you can use the following options:

Parame-
ter

Type De-
fault

Description

vcfHeader string inferIf infer, infers the header from the DataFrame schema. This value can be a complete
header starting with ## or a Hadoop filesystem path to a VCF file. The header from this
file is used as the VCF header for each partition.

validationStringencystring silentControls the behavior when parsing a malformed row. If silent, the row will be dropped
silently. If lenient, the row will be dropped and a warning will be logged. If strict,
an exception will be thrown and writing will fail.

sampleIds string none Can be set to a comma-separated list of sample IDs e.g., SAMPLE01,SAMPLE02,....
Only these samples will be included in the output VCF file. This option only takes effect
if the vcfHeader option is set to infer.

If the header is inferred from the DataFrame, the sample IDs are derived from the rows. If the sample IDs are missing,
they will be represented as sample_n, for which n reflects the index of the sample in a row. In this case, there must be
the same number of samples in each row.

5.2. Read and Write VCF, Plink, and BGEN with Spark 21

https://github.com/samtools/htsjdk

glow Documentation, Release 2.1.0-SNAPSHOT

• For the big VCF writer, the inferred sample IDs are the distinct set of all sample IDs from the DataFrame.

• For the sharded VCF writer, the sample IDs are inferred from the first row of each partition and must be the same
for each row. If the rows do not contain the same samples, provide a complete header of a filesystem path to a
VCF file.

5.2.2 BGEN

Glow provides the ability to read BGEN files, including those distributed by the UK Biobank project.

df = spark.read.format("bgen").load(path)

As with the VCF reader, the provided path can be a file, directory, or glob pattern. If .bgi index files are located in
the same directory as the data files, the reader uses the indexes to more efficiently traverse the data files. Data files can
be processed even if indexes do not exist. The schema of the resulting DataFrame matches that of the VCF reader.

Parameter Type De-
fault

Description

useBgenIndex boolean true If true, use .bgi index files.
sampleFilePath string n/a Path to a .sample Oxford sample information file containing sample IDs if

not stored in the BGEN file.
sampleIdColumn string ID_2 Name of the column in the .sample file corresponding to the sample IDs.
emitHardCalls boolean true If true, adds genotype calls for diploids based on the posterior probabilities.
hardCallThresholddou-

ble
0.9 Sets the threshold for hard calls.

Important: The BGEN reader and writer assume that the first allele in the .bgen file is the reference allele, and that
all following alleles are alternate alleles.

You can use the DataFrameWriter API to save a single BGEN file, which you can then read with other tools.

df.write.format("bigbgen").save(path)

If the genotype arrays are missing ploidy and/or phasing information, the BGEN writer infers the values using the
provided values for ploidy, phasing, or posteriorProbabilities in the genotype arrays. You can provide the value
for ploidy using an integer value ploidy or it can be inferred using the length of an array calls, and you can provide
the phasing information using a boolean value phased.

To control the behavior of the BGEN writer, you can provide the following options:

Parameter Type De-
fault

Description

bitsPerProbabilityinte-
ger

16 Number of bits used to represent each probability value. Must be 8, 16, or 32.

maximumInferredPloidyinte-
ger

10 The maximum ploidy that will be inferred for unphased data if ploidy is missing.

defaultInferredPloidyinte-
ger

2 The inferred ploidy if phasing and ploidy are missing, or ploidy is missing and
cannot be inferred from posteriorProbabilities.

defaultInferredPhasingbooleanfalse The inferred phasing if phasing is missing and cannot be inferred from
posteriorProbabilities.

22 Chapter 5. Variant Data Manipulation

glow Documentation, Release 2.1.0-SNAPSHOT

5.2.3 PLINK

Glow can read binary PLINK binary PED (BED) files with accompanying BIM and FAM files. You can then run
PLINK on Spark Datasets of BED files using the Glow Pipe Transformer.

The provided path can be a file or glob pattern.

df = spark.read.format("plink").load("{prefix}.bed".format(prefix=prefix))

The schema of the resulting DataFrame matches that of the VCF reader. The accompanying variant and sample infor-
mation files must be located at {prefix}.bim and {prefix}.fam.

Parameter Type De-
fault

Description

includeSampleIdsbooleantrue If true, each genotype includes the name of the sample ID it belongs to.
bimDelimiterstring (tab) Whitespace delimiter in the {prefix}.bim file.
famDelimiterstring (space)Whitespace delimiter in the {prefix}.fam file.
mergeFidIid booleantrue If true, sets the sample ID to the family ID and individual ID merged with an under-

score delimiter. If false, sets the sample ID to the individual ID.

Important: The PLINK reader sets the first allele in the .bed file as the alternate allele, and the second allele as the
reference allele.

5.2.4 Manually defining read schema

For any of Glow’s datasources, you can manually set the read schema. This option can be useful if you need to read
malformed VCFs that Glow cannot parse. For example, the following code block manually defines a VCF schema
without any INFO or FORMAT fields other than the genotype calls.

from pyspark.sql.types import *

schema = StructType([
StructField('contigName', StringType()),
StructField('start', LongType()),
StructField('end', LongType()),
StructField('names', ArrayType(StringType(),True)),
StructField('referenceAllele', StringType()),
StructField('alternateAlleles', ArrayType(StringType(),True)),
StructField('qual', DoubleType()),
StructField('filters', ArrayType(StringType(),True)),
StructField('splitFromMultiAllelic', BooleanType()),
StructField('genotypes', ArrayType(StructType([

StructField('calls', ArrayType(IntegerType(),True)),
]))),

])

spark.read.format('vcf').schema(schema).load(path).show()

5.2. Read and Write VCF, Plink, and BGEN with Spark 23

https://spark.apache.org/docs/latest/api/python/reference/pyspark.sql/api/pyspark.sql.DataFrameReader.schema.html#pyspark.sql.DataFrameReader.schema

glow Documentation, Release 2.1.0-SNAPSHOT

Notebook

<div class='embedded-notebook'> How
to run a notebook Get notebook
link</p> <div class='embedded-notebook-container'> <div class='loading-spinner'></div> <iframe
src="../_static/notebooks/etl/variant-data.html" id='6064752024150754873' height="1000px" width="100%"
style="overflow-y:hidden;" scrolling="no"></iframe> </div> </div>

5.3 Read Genome Annotations (GFF3) as a Spark DataFrame

GFF3 (Generic Feature Format Version 3) is a 9-column tab-separated text file format commonly used to store genomic
annotations. Typically, the majority of annotation data in this format appears in the ninth column, called attributes,
as a semi-colon-separated list of <tag>=<value> entries. If Spark’s standard csv data source is used to read GFF3
files, the whole list of attribute tag-value pairs will be read as a single string-typed column, making queries on these
tags/values cumbersome.

To address this issue, Glow provides the gff data source. In addition to loading the first 8 columns of GFF3 as properly
typed columns, the gff data source is able to parse all attribute tag-value pairs in the ninth column of GFF3 and create
an appropriately typed column for each tag. In each row, the column corresponding to a tag will contain the tag’s value
in that row (or null if the tag does not appear in the row).

Like any Spark data source, reading GFF3 files using the gff data source can be done in a single line of code:

df = spark.read.format("gff").load(path)

The gff data source supports all compression formats supported by Spark’s csv data source, including .gz and .bgz
files. It also supports reading globs of files in one command.

Note: The gff data source ignores any comment and directive lines (lines starting with #) in the GFF3 file as well as
any FASTA lines that may appear at the end of the file.

5.3.1 Schema

1. Inferred schema

If no user-specified schema is provided (as in the example above), the data source infers the schema as follows:

• The first 8 fields of the schema (“base” fields) correspond to the first 8 columns of the GFF3 file. Their names,
types and order will be as shown below:

|-- seqId: string (nullable = true)
|-- source: string (nullable = true)
|-- type: string (nullable = true)
|-- start: long (nullable = true)
|-- end: long (nullable = true)
|-- score: double (nullable = true)
|-- strand: string (nullable = true)
|-- phase: integer (nullable = true)

24 Chapter 5. Variant Data Manipulation

https://github.com/The-Sequence-Ontology/Specifications/blob/master/gff3.md

glow Documentation, Release 2.1.0-SNAPSHOT

Note: Although the start column in the GFF3 file is 1-based, the start field in the DataFrame will be 0-based
to match the general practice in Glow.

• The next fields in the inferred schema will be created as the result of parsing the attributes column of the GFF3
file. Each tag will have its own field in the schema. Fields corresponding to any “official” tag (those referred
to as tags with pre-defined meaning) come first, followed by fields corresponding to any other tag (“unofficial”
tags) in alphabetical order.

The complete list of official fields, their data types, and order are as shown below:

|-- ID: string (nullable = true)
|-- Name: string (nullable = true)
|-- Alias: array (nullable = true)
| |-- element: string (containsNull = true)
|-- Parent: array (nullable = true)
| |-- element: string (containsNull = true)
|-- Target: string (nullable = true)
|-- Gap: string (nullable = true)
|-- DerivesFrom: string (nullable = true)
|-- Note: array (nullable = true)
| |-- element: string (containsNull = true)
|-- Dbxref: array (nullable = true)
| |-- element: string (containsNull = true)
|-- OntologyTerm: array (nullable = true)
| |-- element: string (containsNull = true)
|-- Is_circular: boolean (nullable = true)

The unofficial fields will be of string type.

Note:

– If any of official tags does not appear in any row of the GFF3 file, the corresponding field will be excluded
from the inferred schema.

– The official/unofficial field name will be exactly as the corresponding tag appears in the GFF3 file (in terms
of letter case).

– The parser is insensitive to the letter case of the tag, e.g., if the attributes column in the GFF3 file
contains both note and Note tags, they will be both mapped to the same column in the DataFrame. The
name of the column in this case will be either note or Note, chosen randomly.

2. User-specified schema

As with any Spark data source, the gff data source is also able to accept a user-specified schema through the .schema
command. The user-specified schema can have any subset of the base, official, and unofficial fields. The data source
is able to read only the specified base fields and parse out only the specified official and unofficial fields from the
attributes column of the GFF3 file. Here is an example of how the user can specify some base, official, and unofficial
fields while reading the GFF3 file:

mySchema = StructType(
[StructField('seqId', StringType()), # Base field
StructField('start', LongType()), # Base field

(continues on next page)

5.3. Read Genome Annotations (GFF3) as a Spark DataFrame 25

https://github.com/The-Sequence-Ontology/Specifications/blob/master/gff3.md

glow Documentation, Release 2.1.0-SNAPSHOT

(continued from previous page)

StructField('end', LongType()), # Base field
StructField('ID', StringType()), # Official field
StructField('Dbxref', ArrayType(StringType())), # Official field
StructField('mol_type', StringType())] # Unofficial field

)

df_user_specified = spark.read.format("gff").schema(mySchema).load(path)

Note:

• The base field names in the user-specified schema must match the names in the list above in a case-sensitive
manner.

• The official and unofficial fields will be matched with their corresponding tags in the GFF3 file in a case-and-
underscore-insensitive manner. For example, if the GFF3 file contains the official tag db_xref, a user-specified
schema field with the name dbxref, Db_Xref, or any other case-and-underscore-insensitive match will corre-
spond to that tag.

• The user can also include the original attributes column of the GFF3 file as a string field by including
StructField('attributes', StringType()) in the schema.

Notebook

<div class='embedded-notebook'> How
to run a notebook Get
notebook link</p> <div class='embedded-notebook-container'> <div class='loading-spinner'></div>
<iframe src="../_static/notebooks/etl/7_etl_gff_annotations.html" id='8465856133015306318' height="1000px"
width="100%" style="overflow-y:hidden;" scrolling="no"></iframe> </div> </div>

5.4 Create a Genomics Delta Lake

Genomics data is stored in specialized flat-file formats such as VCF or BGEN. However, building robust data engineer-
ing pipelines requires the use of database technology that scales to the expected data volume. And for computational
biology / bioinformatics use cases it also requires support for not only SQL, but also Python, R, and command-line
bioinformatics tools.

The example below shows how to ingest a VCF into a genomics Delta Lake table using Glow. Delta Lake supports
Scala, Python, R and SQL. Bioinformatics tools can also be integrated into your data pipeline with the Glow Pipe
Transformer.

The example explodes a project-level VCF (pVCF) with many genotypes per row (represented as an array of structs),
into a form with one genotype and one variant per row. In this representation Delta Lake can be efficiently queried at
the genotype or gene level.

Then we will register the Delta Lake as a Spark SQL table, perform point queries, and then gene-level queries using
annotation data from the gff demo.

Tip: We recommend ingesting VCF files into Delta tables once volumes reach >1000 samples, >10 billion genotypes
or >1 terabyte.

26 Chapter 5. Variant Data Manipulation

https://delta.io

glow Documentation, Release 2.1.0-SNAPSHOT

5.4.1 Explode pVCF variant dataframe and write to Delta Lake

<div class='embedded-notebook'> How to
run a notebook Get
notebook link</p> <div class='embedded-notebook-container'> <div class='loading-spinner'></div> <iframe
src="../_static/notebooks/etl/6_explode_variant_dataframe.html" id='-6624655659075462032' height="1000px"
width="100%" style="overflow-y:hidden;" scrolling="no"></iframe> </div> </div>

5.4.2 Create database for variants and annotations

<div class='embedded-notebook'> How to
run a notebook Get
notebook link</p> <div class='embedded-notebook-container'> <div class='loading-spinner'></div> <iframe
src="../_static/notebooks/etl/8_create_database_for_querying.html" id='2498724326063824481' height="1000px"
width="100%" style="overflow-y:hidden;" scrolling="no"></iframe> </div> </div>

5.4.3 Query variant database

<div class='embedded-notebook'> How
to run a notebook Get note-
book link</p> <div class='embedded-notebook-container'> <div class='loading-spinner'></div> <iframe
src="../_static/notebooks/etl/9_query_variant_db.html" id='8612066413228184857' height="1000px" width="100%"
style="overflow-y:hidden;" scrolling="no"></iframe> </div> </div>

5.5 Variant Quality Control

Glow includes a variety of tools for variant quality control.

Tip: This topic uses the terms “variant” or “variant data” to refer to single nucleotide variants and short indels.

You can calculate quality control statistics on your variant data using Spark SQL functions, which can be expressed in
Python, R, Scala, or SQL.

5.5. Variant Quality Control 27

glow Documentation, Release 2.1.0-SNAPSHOT

Function Arguments Return
hardy_weinberg The genotypes array. This function

assumes that the variant has been
converted to a biallelic representa-
tion.

A struct with two elements: the ex-
pected heterozygous frequency ac-
cording to Hardy-Weinberg equilib-
rium and the associated p-value.

call_summary_stats The genotypes array A struct containing the following
summary stats:

• callRate: The fraction of
samples with a called geno-
type

• nCalled: The number of
samples with a called geno-
type

• nUncalled: The number of
samples with a missing or
uncalled genotype, as repre-
sented by a ‘.’ in a VCF or -1
in a DataFrame.

• nHet: The number of het-
erozygous samples

• nHomozygous: An array with
the number of samples that
are homozygous for each al-
lele. The 0th element de-
scribes how many sample are
hom-ref.

• nNonRef: The number of
samples that are not hom-ref

• nAllelesCalled: An array
with the number of times each
allele was seen

• alleleFrequencies: An ar-
ray with the frequency for
each allele

dp_summary_stats The genotypes array A struct containing the min, max,
mean, and sample standard deviation
for genotype depth (DP in VCF v4.2
specificiation) across all samples

gq_summary_stats The genotypes array A struct containing the min, max,
mean, and sample standard deviation
for genotype quality (GQ in VCF
v4.2 specification) across all sam-
ples

28 Chapter 5. Variant Data Manipulation

glow Documentation, Release 2.1.0-SNAPSHOT

5.5.1 Notebook

<div class='embedded-notebook'> How
to run a notebook Get note-
book link</p> <div class='embedded-notebook-container'> <div class='loading-spinner'></div> <iframe
src="../_static/notebooks/etl/variant-qc-demo.html" id='5916458861729196510' height="1000px" width="100%"
style="overflow-y:hidden;" scrolling="no"></iframe> </div> </div>

5.6 Sample Quality Control

You can calculate quality control statistics on your variant data using Spark SQL functions, which can be expressed in
Python, R, Scala, or SQL.

Each of these functions returns an array of structs containing metrics for one sample. If sample ids are including in the
input DataFrame, they will be propagated to the output. The functions assume that the genotypes in each row of the
input DataFrame contain the same samples in the same order.

5.6. Sample Quality Control 29

glow Documentation, Release 2.1.0-SNAPSHOT

Functions Arguments Return
sample_call_summary_stats referenceAllele string,

alternateAlleles array of
strings, genotypes array calls

A struct containing the following
summary stats:

• callRate: The fraction of
variants where this sample has
a called genotype. Equivalent
to nCalled / (nCalled +
nUncalled)

• nCalled: The number of
variants where this sample has
a called genotype

• nUncalled: The number of
variants where this sample
does not have a called geno-
type

• nHomRef: The number of
variants where this sample is
homozygous reference

• nHet: The number of variants
where this sample is heterozy-
gous

• nHomVar: The number of
variants where this sample is
homozygous non reference

• nSnv: The number of calls
where this sample has a single
nucleotide variant. This value
is the sum of nTransition
and nTransversion

• nInsertion: Insertion vari-
ant count

• nDeletion: Deletion variant
count

• nTransition: Transition
count

• nTransversion: Transver-
sion count

• nSpanningDeletion: The
number of calls where this
sample has a spanning dele-
tion

• rTiTv: Ratio of transitions to
tranversions (nTransition
/ nTransversion)

• rInsertionDeletion:
Ratio of insertions to
deletions (nInsertion
/ nDeletion)

• rHetHomVar: Ratio of
heterozygous to homozy-
gous variant calls (nHet /
nHomVar)

sample_dp_summary_stats genotypes array with a depth field A struct with min, max, mean, and
stddev

sample_gq_summary_stats genotypes array with a
conditionalQuality field

A struct with min, max, mean, and
stddev

30 Chapter 5. Variant Data Manipulation

glow Documentation, Release 2.1.0-SNAPSHOT

5.6.1 Computing user-defined sample QC metrics

In addition to the built-in QC functions discussed above, Glow provides two ways to compute user-defined per-sample
statistics.

Explode and aggregate

If your dataset is not in a normalized, pVCF-esque shape, or if you want the aggregation output in a table rather than
a single array, you can explode the genotypes array and use any of the aggregation functions built into Spark. For
example, this code snippet computes the number of sites with a non-reference allele for each sample:

import pyspark.sql.functions as fx
exploded_df = df.withColumn("genotype", fx.explode("genotypes"))\
.withColumn("hasNonRef", fx.expr("exists(genotype.calls, call -> call != -1 and call !

→˓= 0)"))

agg = exploded_df.groupBy("genotype.sampleId", "hasNonRef")\
.agg(fx.count(fx.lit(1)))\
.orderBy("sampleId", "hasNonRef")

Notebook

<div class='embedded-notebook'> How
to run a notebook Get note-
book link</p> <div class='embedded-notebook-container'> <div class='loading-spinner'></div> <iframe
src="../_static/notebooks/etl/sample-qc-demo.html" id='578237886225679058' height="1000px" width="100%"
style="overflow-y:hidden;" scrolling="no"></iframe> </div> </div>

5.7 Liftover

LiftOver converts genomic data between reference assemblies. The UCSC liftOver tool uses a chain file to perform
simple coordinate conversion, for example on BED files. The Picard LiftOverVcf tool also uses the new reference
assembly file to transform variant information (eg. alleles and INFO fields). Glow can be used to run coordinate
liftOver and variant liftOver.

5.7.1 Create a liftOver cluster

For both coordinate and variant liftOver, you need a chain file on every node of the cluster. On a Databricks cluster, an
example of a cluster-scoped init script you can use to download the required file for liftOver from the b37 to the hg38
reference assembly is as follows:

#!/usr/bin/env bash
set -ex
set -o pipefail
mkdir /opt/liftover
curl https://raw.githubusercontent.com/broadinstitute/gatk/master/scripts/funcotator/
→˓data_sources/gnomAD/b37ToHg38.over.chain --output /opt/liftover/b37ToHg38.over.chain

5.7. Liftover 31

https://genome.ucsc.edu/cgi-bin/hgLiftOver
https://genome.ucsc.edu/goldenPath/help/chain.html
https://genome.ucsc.edu/FAQ/FAQformat.html#format1
https://gatk.broadinstitute.org/hc/en-us/articles/360036857991-LiftoverVcf-Picard
https://gatk.broadinstitute.org/hc/en-us/articles/360035531652?id=11013
https://gatk.broadinstitute.org/hc/en-us/articles/360035531652?id=11013
https://docs.databricks.com/en/init-scripts/cluster-scoped.html

glow Documentation, Release 2.1.0-SNAPSHOT

Tip: Chain files may represent chromosomes with the “chr” prefix or not, e.g. “chr1” or “1”. Use the Spark SQL
function regexp_replace to transform your variant dataset to match the chain file. For example:

import pyspark.sql.functions as fx
#add 'chr' prefix
vcf_df = vcf_df.withColumn("contigName", fx.regexp_replace(fx.col('contigName'), '^',
→˓'chr'))
#remove prefix
vcf_df = vcf_df.withColumn("contigName", fx.regexp_replace(fx.col('contigName'), 'chr', '
→˓'))

5.7.2 Coordinate liftOver

To perform liftOver for genomic coordinates, use the function lift_over_coordinates. lift_over_coordinates
has the following parameters.

• chromosome: string

• start: long

• end: long

• chain file: string (constant value, such as one created with lit())

• minimum fraction of bases that must remap: double (optional, defaults to .95)

The returned struct has the following values if liftOver succeeded. If not, the function returns null.

• contigName: string

• start: long

• end: long

output_df = input_df.withColumn('lifted', glow.lift_over_coordinates('contigName', 'start
→˓',
'end', chain_file, 0.99))

5.7.3 Variant liftOver

For genetic variant data, use the lift_over_variants transformer. In addition to performing liftOver for genetic
coordinates, variant liftOver performs the following transformations:

• Reverse-complement and left-align the variant if needed

• Adjust the SNP, and correct allele-frequency-like INFO fields and the relevant genotypes if the reference and
alternate alleles have been swapped in the new genome build

Pull a target assembly reference file down to every node in the Spark cluster in addition to a chain file before performing
variant liftOver.

The lift_over_variants transformer operates on a DataFrame containing genetic variants and supports the follow-
ing options:

32 Chapter 5. Variant Data Manipulation

glow Documentation, Release 2.1.0-SNAPSHOT

Parameter Default Description
chain_file n/a The path of the chain file.
reference_file n/a The path of the target reference file.
min_match_ratio .95 Minimum fraction of bases that must remap.

The output DataFrame’s schema consists of the input DataFrame’s schema with the following fields appended:

• INFO_SwappedAlleles: boolean (null if liftOver failed, true if the reference and alternate alleles were
swapped, false otherwise)

• INFO_ReverseComplementedAlleles: boolean (null if liftover failed, true if the reference and alternate al-
leles were reverse complemented, false otherwise)

• liftOverStatus: struct

– success: boolean (true if liftOver succeeded, false otherwise)

– errorMessage: string (null if liftOver succeeded, message describing reason for liftOver failure other-
wise)

If liftOver succeeds, the output row contains the liftOver result and liftOverStatus.success is true. If liftOver
fails, the output row contains the original input row, the additional INFO fields are null, liftOverStatus.success
is false, and liftOverStatus.errorMessage contains the reason liftOver failed.

output_df = glow.transform('lift_over_variants', input_df, chain_file=chain_file,␣
→˓reference_file=reference_file)

Liftover notebook

<div class='embedded-notebook'> How
to run a notebook Get notebook
link</p> <div class='embedded-notebook-container'> <div class='loading-spinner'></div> <iframe
src="../_static/notebooks/etl/10_liftOver.html" id='-2851368264075873603' height="1000px" width="100%"
style="overflow-y:hidden;" scrolling="no"></iframe> </div> </div>

5.8 Variant Normalization

Different genomic analysis tools often represent the same genomic variant in different ways, making it non-trivial to
integrate and compare variants across call sets. Therefore, variant normalization is an essential step to be applied on
variants before further downstream analysis to make sure the same variant is represented identically in different call
sets. Normalization is achieved by making sure the variant is parsimonious and left-aligned (see Variant Normalization
for more details).

Glow provides variant normalization capabilities as a DataFrame transformer as well as a SQL expression function
with a Python API, bringing unprecedented scalability to this operation.

Note: Glow’s variant normalization algorithm follows the same logic as those used in normalization tools such as
bcftools norm and vt normalize. This normalization logic is different from the one used by GATK’s LeftAlignAndTrim-
Variants, which sometimes yields incorrect normalization (see Variant Normalization for more details).

5.8. Variant Normalization 33

https://genome.sph.umich.edu/wiki/Variant_Normalization
https://www.htslib.org/doc/bcftools.html#norm
https://genome.sph.umich.edu/wiki/Vt#Normalization
https://gatk.broadinstitute.org/hc/en-us/articles/360037225872-LeftAlignAndTrimVariants
https://gatk.broadinstitute.org/hc/en-us/articles/360037225872-LeftAlignAndTrimVariants
https://genome.sph.umich.edu/wiki/Variant_Normalization

glow Documentation, Release 2.1.0-SNAPSHOT

5.8.1 normalize_variants Transformer

The normalize_variants transformer can be applied to normalize a variant DataFrame, such as one generated by
loading VCF or BGEN files. The output of the transformer is described under the replace_columns option below.

5.8.2 Usage

Assuming df_original is a variable of type DataFrame which contains the genomic variant records, and
ref_genome_path is a variable of type String containing the path to the reference genome file, a minimal example of
using this transformer for normalization is as follows:

Python

Scala

df_normalized = glow.transform("normalize_variants", df_original, reference_genome_
→˓path=ref_genome_path)

df_normalized = Glow.transform("normalize_variants", df_original, Map("reference_genome_
→˓path" -> ref_genome_path))

5.8.3 Options

The normalize_variants transformer has the following options:

34 Chapter 5. Variant Data Manipulation

glow Documentation, Release 2.1.0-SNAPSHOT

Option Type Possible values and description
reference_genome_path string Path to the reference genome .

fasta or .fa file. This file must be
accompanied with a .fai index file
in the same folder.

replace_columns boolean

False: The transformer does not
modify the original start, end,
referenceAllele and
alternateAlleles columns.
Instead, a StructType column called
normalizationResult is added
to the DataFrame. This column
contains the normalized start,
end, referenceAllele, and
alternateAlleles columns as
well as the normalizationStatus
StructType as the fifth field, which
contains the following subfields:

changed: Indicates whether
the variant data was changed
as a result of normalization
errorMessage: An error
message in case the attempt
at normalizing the row hit an
error. In this case, the
changed field will be set to
False. If no errors occur this
field will be null. In case of
error, the first four fields in
normalizationResult will
be null.

True (default): The original start,
end, referenceAllele, and
alternateAlleles columns are
replaced with the normalized values
in case they have changed.
Otherwise (in case of no change or
an error), the original start, end,
referenceAllele, and
alternateAlleles are not
modified. A StructType
normalizationStatus column is
added to the DataFrame with the
same subfields explained above.

mode (deprecated) string

normalize: Only normalizes the
variants (if user does not pass the
option, normalize is assumed as
default)
split_and_normalize: Split
multiallelic variants to biallelic
variants and then normalize the
variants. This usage is deprecated.
Instead, use split_multiallelics
transformer followed by
normalize_variants transformer.
split: Only split the multiallelic
variants to biallelic without
normalizing. This usage is
deprecated. Instead, use
split_multiallelics transformer.

5.8. Variant Normalization 35

glow Documentation, Release 2.1.0-SNAPSHOT

5.8.4 normalize_variant Function

The normalizer can also be used as a SQL expression function. See Glow PySpark Functions for details on how to use
it in the Python API. An example of an expression using the normalize_variant function is as follows:

from pyspark.sql.functions import lit
normalization_expr = glow.normalize_variant('contigName', 'start', 'end',
→˓'referenceAllele', 'alternateAlleles', ref_genome_path)
df_normalized = df_original.withColumn('normalizationResult', normalization_expr)

Variant normalization notebook

<div class='embedded-notebook'> How
to run a notebook Get note-
book link</p> <div class='embedded-notebook-container'> <div class='loading-spinner'></div> <iframe
src="../_static/notebooks/etl/normalizevariants.html" id='-1453618919071260296' height="1000px" width="100%"
style="overflow-y:hidden;" scrolling="no"></iframe> </div> </div>

5.9 Split Multiallelic Variants

Splitting multiallelic variants to biallelic variants is a transformation sometimes required before further downstream
analysis. Glow provides the split_multiallelics transformer to be applied on a variant DataFrame to split multi-
allelic variants in the DataFrame to biallelic variants. This transformer is able to handle any number of ALT alleles and
any ploidy.

Note: The splitting logic used by the split_multiallelics transformer is the same as the one used by the vt
decompose tool of the vt package with option -s (note that the example provided at vt decompose user manual page
does not reflect the behavior of vt decompose -s completely correctly).

The precise behavior of the split_multiallelics transformer is presented below:

• A given multiallelic row with 𝑛 ALT alleles is split to 𝑛 biallelic rows, each with one of the ALT alleles of the
original multiallelic row. The REF allele in all split rows is the same as the REF allele in the multiallelic row.

• If the split_info_fields option is provided, only the specified INFO columns will be split

• If the split_info_fields option is not provided, INFO columns derived from VCF fields with number A will
be split

• Genotype fields for each sample are treated as follows: The GT field becomes biallelic in each row, where the
original ALT alleles that are not present in that row are replaced with no call. The fields with number of entries
equal to number of REF + ALT alleles, are properly split into rows, where in each split row, only entries corre-
sponding to the REF allele as well as the ALT allele present in that row are kept. The fields which follow colex
order (e.g., GL, PL, and GP) are properly split between split rows where in each row only the elements corre-
sponding to genotypes comprising of the REF and ALT alleles in that row are listed. Other genotype fields are
just repeated over the split rows.

• Any other field in the DataFrame is just repeated across the split rows.

As an example (shown in VCF file format), the following multiallelic row

#CHROM POS ID REF ALT QUAL FILTER INFO FORMAT SAMPLE1
20 101 . A ACCA,TCGG . PASS VC=INDEL;AC=3,2;AF=0.375,
→˓0.25;AN=8 GT:AD:DP:GQ:PL 0/1:2,15,31:30:99:2407,0,533,697,822,574

36 Chapter 5. Variant Data Manipulation

https://genome.sph.umich.edu/wiki/Vt#Decompose
https://genome.sph.umich.edu/wiki/Vt#Decompose
https://genome.sph.umich.edu/wiki/Vt#Decompose

glow Documentation, Release 2.1.0-SNAPSHOT

will be split into the following two biallelic rows:

#CHROM POS ID REF ALT QUAL FILTER INFO FORMAT SAMPLE1
20 101 . A ACCA . PASS VC=INDEL;AC=3;AF=0.375;AN=8;OLD_
→˓MULTIALLELIC=20:101:A/ACCA/TCGG GT:AD:DP:GQ:PL 0/1:2,15:30:99:2407,0,533
20 101 . A TCGG . PASS VC=INDEL;AC=2;AF=0.25;AN=8;OLD_
→˓MULTIALLELIC=20:101:A/ACCA/TCGG GT:AD:DP:GQ:PL 0/.:2,31:30:99:2407,697,574

5.9.1 Options

The split_multiallelics transformer has the following options:

Option Type Possible values and description
split_info_fields string A comma separated list of info columns that should be split i.e., INFO_AC,

INFO_AF

5.9.2 Usage

Assuming df_original is a variable of type DataFrame which contains the genomic variant records, an example of
using this transformer for splitting multiallelic variants is:

Python

Scala

df_split = glow.transform("split_multiallelics", df_original)

df_split = Glow.transform("split_multiallelics", df_original)

Tip: The split_multiallelics transformer is often significantly faster if the whole-stage code generation feature
of Spark Sql is turned off. Therefore, it is recommended that you temporarily turn off this feature using the following
command before using this transformer.

Python

Scala

spark.conf.set("spark.sql.codegen.wholeStage", False)

spark.conf.set("spark.sql.codegen.wholeStage", false)

Remember to turn this feature back on after your split DataFrame is materialized.

5.9. Split Multiallelic Variants 37

glow Documentation, Release 2.1.0-SNAPSHOT

Split Multiallelic Variants notebook

<div class='embedded-notebook'> How to
run a notebook Get
notebook link</p> <div class='embedded-notebook-container'> <div class='loading-spinner'></div> <iframe
src="../_static/notebooks/etl/splitmultiallelics-transformer.html" id='5005892945875933137' height="1000px"
width="100%" style="overflow-y:hidden;" scrolling="no"></iframe> </div> </div>

5.10 Merging Variant Datasets

You can use Glow and Spark to merge genomic variant datasets from non-overlapping sample sets into a multi-sample
dataset. In these examples, we will read from VCF files, but the same logic works on DataFrames backed by other file
formats.

First, read the VCF files into a single Spark DataFrame:

from pyspark.sql.functions import *

df = spark.read.format('vcf').load([path1, path2])

Alternatively, you can use the "union" DataFrame method if the VCF files have the same␣
→˓schema
df1 = spark.read.format('vcf').load(path1)
df2 = spark.read.format('vcf').load(path2)
df = df1.union(df2)

The resulting DataFrame contains all records from the VCFs you want to merge, but the genotypes from different
samples at the same site have not been combined. You can use an aggregation to combine the genotype arrays.

from pyspark.sql.functions import *

merged_df = df.groupBy('contigName', 'start', 'end', 'referenceAllele', 'alternateAlleles
→˓')\
.agg(sort_array(flatten(collect_list('genotypes'))).alias('genotypes'))

Important: When reading VCF files for a merge operation, sampleId must be the first field in the genotype struct.
This is the default Glow schema.

The genotypes from different samples now appear in the same genotypes array.

Note: If the VCFs you are merging contain different sites, elements will be missing from the genotypes array after
aggregation. Glow automatically fills in missing genotypes when writing to bigvcf, so an exported VCF will still
contain all samples.

38 Chapter 5. Variant Data Manipulation

glow Documentation, Release 2.1.0-SNAPSHOT

5.10.1 Aggregating INFO fields

To preserve INFO fields in a merge, you can use the aggregation functions in Spark. For instance, to emit an INFO_DP
column that is the sum of the INFO_DP columns across all samples:

from pyspark.sql.functions import *

merged_df = df.groupBy('contigName', 'start', 'end', 'referenceAllele', 'alternateAlleles
→˓')\
.agg(sort_array(flatten(collect_list('genotypes'))).alias('genotypes'),

sum('INFO_DP').alias('INFO_DP'))

5.10.2 Joint genotyping

The merge logic in this document allows you to quickly aggregate genotyping array data or single sample VCFs. For a
more sophisticated aggregation that unifies alleles at overlapping sites and uses cohort-level statistics to refine genotype
calls, we recommend running a joint genotyping pipeline.

Notebook

<div class='embedded-notebook'> How
to run a notebook Get notebook
link</p> <div class='embedded-notebook-container'> <div class='loading-spinner'></div> <iframe
src="../_static/notebooks/etl/merge-vcf.html" id='-5723516357556316663' height="1000px" width="100%"
style="overflow-y:hidden;" scrolling="no"></iframe> </div> </div>

5.11 Utility Functions

Glow includes a variety of utility functions for performing basic data manipulation.

5.11.1 Struct transformations

Glow’s struct transformation functions change the schema structure of the DataFrame. These transformations integrate
with functions whose parameter structs require a certain schema.

• subset_struct: subset fields from a struct

from pyspark.sql import Row
row_one = Row(Row(str_col='foo', int_col=1, bool_col=True))
row_two = Row(Row(str_col='bar', int_col=2, bool_col=False))
base_df = spark.createDataFrame([row_one, row_two], schema=['base_col'])
subsetted_df = base_df.select(glow.subset_struct('base_col', 'str_col', 'bool_col').
→˓alias('subsetted_col'))

• add_struct_fields: append fields to a struct

from pyspark.sql.functions import lit, reverse
added_df = base_df.select(glow.add_struct_fields('base_col', lit('float_col'), lit(3.14),
→˓ lit('rev_str_col'), reverse(base_df.base_col.str_col)).alias('added_col'))

5.11. Utility Functions 39

glow Documentation, Release 2.1.0-SNAPSHOT

• expand_struct: explode a struct into columns

expanded_df = base_df.select(glow.expand_struct('base_col'))

5.11.2 Spark ML transformations

Glow supports transformations between double arrays and Spark ML vectors for integration with machine learning
libraries such as Spark’s machine learning library (MLlib).

• array_to_dense_vector: transform from an array to a dense vector

array_df = spark.createDataFrame([Row([1.0, 2.0, 3.0]), Row([4.1, 5.1, 6.1])], schema=[
→˓'array_col'])
dense_df = array_df.select(glow.array_to_dense_vector('array_col').alias('dense_vector_
→˓col'))

• array_to_sparse_vector: transform from an array to a sparse vector

sparse_df = array_df.select(glow.array_to_sparse_vector('array_col').alias('sparse_
→˓vector_col'))

• vector_to_array: transform from a vector to a double array

from pyspark.ml.linalg import SparseVector
row_one = Row(vector_col=SparseVector(3, [0, 2], [1.0, 3.0]))
row_two = Row(vector_col=SparseVector(3, [1], [1.0]))
vector_df = spark.createDataFrame([row_one, row_two])
array_df = vector_df.select(glow.vector_to_array('vector_col').alias('array_col'))

• explode_matrix: explode a Spark ML matrix such that each row becomes an array of doubles

from pyspark.ml.linalg import DenseMatrix
matrix_df = spark.createDataFrame(Row([DenseMatrix(2, 3, range(6))]), schema=['matrix_col
→˓'])
array_df = matrix_df.select(glow.explode_matrix('matrix_col').alias('array_col'))

5.11.3 Variant data transformations

Glow supports numeric transformations on variant data for downstream calculations, such as GWAS.

• genotype_states: create a numeric representation for each sample’s genotype data. This calculates the sum
of the calls (or -1 if any calls are missing); the sum is equivalent to the number of alternate alleles for biallelic
variants.

from pyspark.sql.types import *

missing_and_hom_ref = Row([Row(calls=[-1,0]), Row(calls=[0,0])])
het_and_hom_alt = Row([Row(calls=[0,1]), Row(calls=[1,1])])
calls_schema = StructField('calls', ArrayType(IntegerType()))
genotypes_schema = StructField('genotypes_col', ArrayType(StructType([calls_schema])))
genotypes_df = spark.createDataFrame([missing_and_hom_ref, het_and_hom_alt],␣
→˓StructType([genotypes_schema]))

(continues on next page)

40 Chapter 5. Variant Data Manipulation

glow Documentation, Release 2.1.0-SNAPSHOT

(continued from previous page)

num_alt_alleles_df = genotypes_df.select(glow.genotype_states('genotypes_col').alias(
→˓'num_alt_alleles_col'))

• hard_calls: get hard calls from genotype probabilities. These are determined based on the number of alternate
alleles for the variant, whether the probabilities are phased (true for haplotypes and false for genotypes), and a
call threshold (if not provided, this defaults to 0.9). If no calls have a probability above the threshold, the call is
set to -1.

unphased_above_threshold = Row(probabilities=[0.0, 0.0, 0.0, 1.0, 0.0, 0.0], num_alts=2,␣
→˓phased=False)
phased_below_threshold = Row(probabilities=[0.1, 0.9, 0.8, 0.2], num_alts=1, phased=True)
uncalled_df = spark.createDataFrame([unphased_above_threshold, phased_below_threshold])
hard_calls_df = uncalled_df.select(glow.hard_calls('probabilities', 'num_alts', 'phased',
→˓ 0.95).alias('calls'))

• mean_substitute: substitutes the missing values of a numeric array using the mean of the non-missing values.
Any values that are NaN, null or equal to the missing value parameter are considered missing. If all values are
missing, they are substituted with the missing value. If the missing value is not provided, this defaults to -1.

unsubstituted_row = Row(unsubstituted_values=[float('nan'), None, -1.0, 0.0, 1.0, 2.0, 3.
→˓0])
unsubstituted_df = spark.createDataFrame([unsubstituted_row])
substituted_df = unsubstituted_df.select(glow.mean_substitute('unsubstituted_values',␣
→˓lit(-1.0)).alias('substituted_values'))

5.11. Utility Functions 41

glow Documentation, Release 2.1.0-SNAPSHOT

42 Chapter 5. Variant Data Manipulation

CHAPTER

SIX

TERTIARY ANALYSIS

Perform population-scale statistical analyses of genetic variants.

6.1 The Pipe Transformer for Parallelizing Command-Line Bioinfor-
matics Tools

Some single-node tools take a long time to run. To accelerate them, Glow includes a utility called the Pipe Transformer
to process Spark DataFrames with command-line tools.

The tool supports vcf and txt formatted Spark DataFrames as inputs. And it returns a Spark DataFrame. You can
specify a quarantine location for partitions of the DataFrame that error when processed by the bioinformatics tool. This
is analagous to how liftOver handles failures caused by edge cases.

6.1.1 Usage

Consider a minimal case with a DataFrame containing a single column of strings. You can use the Pipe Transformer
to reverse each of the strings in the input DataFrame using the rev Linux command:

Python

Scala

Provide options through the arg_map argument or as keyword args.

Create a text-only DataFrame
df = spark.createDataFrame([['foo'], ['bar'], ['baz']], ['value'])
rev_df = glow.transform('pipe', df, cmd=['rev'], input_formatter='text', output_
→˓formatter='text')

Provide options as a Map[String, Any].

Glow.transform("pipe", df, Map(
"cmd" -> Seq("grep", "-v", "#INFO"),
"inputFormatter" -> "vcf",
"outputFormatter" -> "vcf",
"inVcfHeader" -> "infer")

)

The options in this example demonstrate how to control the basic behavior of the transformer:

• cmd is a JSON-encoded array that contains the command to invoke the program

43

https://genome.ucsc.edu/cgi-bin/hgLiftOver

glow Documentation, Release 2.1.0-SNAPSHOT

• input_formatter defines how each input row should be passed to the program

• output_formatter defines how the program output should be converted into a new DataFrame

The input DataFrame can come from any Spark data source — Delta, Parquet, VCF, BGEN, and so on.

6.1.2 Integrating with bioinformatics tools

To integrate with tools for genomic data, you can configure the Pipe Transformer to write each partition of the input
DataFrame as VCF by choosing vcf as the input and output formatter. Here is an example using bedtools.

Important: The bioinformatics tool must be installed on each virtual machine of the Spark cluster.

df = spark.read.format("vcf").load(path)

intersection_df = glow.transform(
'pipe',
df,
cmd=['bedtools', 'intersect', '-a', 'stdin', '-b', bed, '-header', '-wa'],
input_formatter='vcf',
in_vcf_header='infer',
output_formatter='vcf'

)

You must specify a method to determine the VCF header when using the VCF input formatter. The option infer
instructs the Pipe Transformer to derive a VCF header from the DataFrame schema. Alternately, you can provide the
header as a blob, or you can point to the filesystem path for an existing VCF file with the correct header. For a more
complex example using The Variant Effect Predictor (VEP) see the notebook example below.

6.1.3 Options

Option keys and values are always strings. You can specify option names in snake or camel case; for example
inputFormatter, input_formatter, and InputFormatter are all equivalent.

Op-
tion

Description

cmd The command, specified as an array of strings, to invoke the piped program. The program’s stdin receives
the formatted contents of the input DataFrame, and the output DataFrame is constructed from its stdout.
The stderr stream will appear in the executor logs.

input_formatterConverts the input DataFrame to a format that the piped program understands. Built-in input formatters
are text and vcf.

output_formatterConverts the output of the piped program back into a DataFrame. Built-in output formatters are text and
vcf.

quarantine_tableSpark SQL table to write partitions in the dataframe that throw an error.
quarantine_flavorFile type for quarantined output. Built-in output formatters are delta.
env_* Options beginning with env_ are interpreted as environment variables. Like other options, the

environment variable name is converted to lower snake case. For example, providing the option
env_aniMal=MONKEY results in an environment variable with key ani_mal and value MONKEY being
provided to the piped program.

44 Chapter 6. Tertiary Analysis

glow Documentation, Release 2.1.0-SNAPSHOT

Text input and output formatters

The text input formatter expects that the input DataFrame contains a single string typed column.

Option Description
in_header A string to write before the DataFrame contents for each partition.
out_ignore_header If True, the output formatter will ignore the first line of the command output.

Tip: You can use the in_header and out_ignore_header options with the to_csv and from_csv in Spark to integrate
with tools that read or write CSV data.

VCF input formatter

Option Description
in_vcf_header How to determine a VCF header from the input

DataFrame. Possible values:
• infer: Derive a VCF header from the DataFrame

schema. The inference behavior matches that of
the sharded VCF writer.

• The complete contents of a VCF header starting
with ##

• A Hadoop filesystem path to a VCF file. The
header from this file is used as the VCF header for
each partition.

6.1.4 Cleanup

The pipe transformer uses RDD caching to optimize performance. Spark automatically drops old data partitions in a
least-recently-used (LRU) fashion. If you would like to manually clean up the RDDs cached by the pipe transformer
instead of waiting for them to fall out of the cache, use the pipe cleanup transformer on any DataFrame. Do not perform
cleanup until the pipe transformer results have been materialized, such as by being written to a Delta Lake table.

Python

Scala

glow.transform('pipe_cleanup', df)

Glow.transform("pipe_cleanup", df)

6.1. The Pipe Transformer for Parallelizing Command-Line Bioinformatics Tools 45

https://spark.apache.org/docs/latest/api/python/reference/pyspark.sql/api/pyspark.sql.functions.to_csv.html
https://spark.apache.org/docs/latest/api/python/reference/pyspark.sql/api/pyspark.sql.functions.from_csv.html
https://delta.io

glow Documentation, Release 2.1.0-SNAPSHOT

6.1.5 Examples

The examples below show how to parallelize Bedtools, Plink and VEP.

Important: Please troubleshoot pipe transformer errors by inspecting the stderr logs for failed tasks via: Spark UI
-> Stages -> Failed Stages -> Description -> Logs -> stderr

Tip: Bedtools shuffle and intersect are two bedtools commands suited to the pipe transformer.

Tip: The VEP example shows how to quarantine corrupted records. This functionality was introduced from Glow
v1.1.2.

Pipe Transformer bedtools example notebook

<div class='embedded-notebook'> How
to run a notebook Get note-
book link</p> <div class='embedded-notebook-container'> <div class='loading-spinner'></div> <iframe
src="../_static/notebooks/tertiary/pipe-transformer.html" id='-60953493738141239' height="1000px" width="100%"
style="overflow-y:hidden;" scrolling="no"></iframe> </div> </div>

Pipe Transformer Variant Effect Predictor (VEP) example notebook

<div class='embedded-notebook'> How to
run a notebook Get note-
book link</p> <div class='embedded-notebook-container'> <div class='loading-spinner'></div> <iframe
src="../_static/notebooks/tertiary/pipe-transformer-vep.html" id='-4847101497703839539' height="1000px"
width="100%" style="overflow-y:hidden;" scrolling="no"></iframe> </div> </div>

6.2 Python Statistics Libraries

This notebook demonstrates how to use pandas user-defined functions (UDFs) to run native Python code with PySpark
when working with genomic data.

6.2.1 pandas example notebook

<div class='embedded-notebook'> How
to run a notebook Get note-
book link</p> <div class='embedded-notebook-container'> <div class='loading-spinner'></div> <iframe
src="../_static/notebooks/tertiary/pandas-lmm.html" id='1157436303077134587' height="1000px" width="100%"
style="overflow-y:hidden;" scrolling="no"></iframe> </div> </div>

46 Chapter 6. Tertiary Analysis

glow Documentation, Release 2.1.0-SNAPSHOT

6.3 GloWGR: Whole Genome Regression

Glow supports Whole Genome Regression (WGR) as GloWGR, a distributed version of the regenie method (see the
paper published in Nature Genetics). GloWGR supports two types of phenotypes:

• Quantitative

• Binary

Many steps of the GloWGR workflow explained in this page are common between the two cases. Any step that is
different between the two has separate explanations clearly marked by “for quantitative phenotypes” vs. “for binary
phenotypes”.

6.3.1 Performance

The following figure demonstrates the performance gain obtained by using parallelized GloWGR in comparision with
single machine BOLT, fastGWA GRM, and regenie for fitting WGR models against 50 quantitative phenotypes from
the UK Biobank project.

6.3. GloWGR: Whole Genome Regression 47

https://rgcgithub.github.io/regenie/
https://www.nature.com/articles/s41588-021-00870-7

glow Documentation, Release 2.1.0-SNAPSHOT

6.3.2 Overview

GloWGR consists of the following stages:

• Block the genotype matrix across samples and variants

• Perform dimensionality reduction with linear ridge regression

• Estimate phenotypic predictors using

– For quantitative phenotypes: linear ridge regression

– For binary phenotypes: logistic ridge regression

The following diagram provides an overview of the operations and data within the stages of GlowWGR and their
interrelationship.

48 Chapter 6. Tertiary Analysis

glow Documentation, Release 2.1.0-SNAPSHOT

6.3. GloWGR: Whole Genome Regression 49

glow Documentation, Release 2.1.0-SNAPSHOT

6.3.3 Data preparation

GloWGR accepts three input data components.

1. Genotype data

The genotype data may be read as a Spark DataFrame from any variant data source supported by Glow, such as VCF,
BGEN or PLINK . For scalability and high-performance repeated use, we recommend storing flat genotype files into
Delta tables. The DataFrame must include a column values containing a numeric representation of each genotype.
The genotypic values may not be missing.

When loading the variants into the DataFrame, perform the following transformations:

• Split multiallelic variants with the split_multiallelics transformer.

• Create a values column by calculating the numeric representation of each genotype. This representation is typi-
cally the number of alternate alleles for biallelic variants which can be calculated with glow.genotype_states.
Replace any missing values with the mean of the non-missing values using glow.mean_substitute.

Example

from pyspark.sql.functions import col, lit

variants = spark.read.format('vcf').load(genotypes_vcf)
genotypes = variants.withColumn('values', glow.mean_substitute(glow.genotype_states(col(
→˓'genotypes'))))

2. Phenotype data

The phenotype data is represented as a Pandas DataFrame indexed by the sample ID. Phenotypes are also referred to
as labels. Each column represents a single phenotype. It is assumed that there are no missing phenotype values. There
is no need to standardize the phenotypes. GloWGR automatically standardizes the data before usage if necessary.

• For quantitative phenotypes:

import pandas as pd
label_df = pd.read_csv(continuous_phenotypes_csv, index_col='sample_id')[[
→˓'Continuous_Trait_1', 'Continuous_Trait_2']]

• For binary phenotypes: Phenotype values are either 0 or 1.

Example

import pandas as pd
label_df = pd.read_csv(binary_phenotypes_csv, index_col='sample_id')

50 Chapter 6. Tertiary Analysis

glow Documentation, Release 2.1.0-SNAPSHOT

3. Covariate data

The covariate data is represented as a Pandas DataFrame indexed by the sample ID. Each column represents a single
covariate. It is assumed that there are no missing covariate values. There is no need to standardize the covariates.
GloWGR automatically standardizes the data before usage if necessary.

Example

covariate_df = pd.read_csv(covariates_csv, index_col='sample_id')

6.3.4 Stage 1. Genotype matrix blocking

The first stage of GloWGR is to generate the block genotype matrix. The glow.wgr.functions.
block_variants_and_samples function is used for this purpose and creates two objects: a block genotype matrix
and a sample block mapping.

Warning: We do not recommend using the split_multiallelics transformer and the
block_variants_and_samples function in the same query due to JVM JIT code size limits during whole-stage
code generation. It is best to persist the variants after splitting multiallelics to a Delta table (see Create a Genomics
Delta Lake) and then read the data from this Delta table to apply block_variants_and_samples.

Parameters

• genotypes: Genotype DataFrame including the values column generated as explained above

• sample_ids: A python List of sample IDs. Can be created by applying glow.wgr.functions.
get_sample_ids to a genotype DataFrame

• variants_per_block: Number of variants to include in each block. We recommend 1000.

• sample_block_count: Number of sample blocks to create. We recommend 10.

Return

The function returns a block genotype matrix and a sample block mapping.

• Block genotype matrix (see figure below): The block genotype matrix can be conceptually imagined
as an 𝑁 ×𝑀 matrix 𝑋 where each row represents an individual sample, and each column represents
a variant, and each cell (𝑖, 𝑗) contains the genotype value for sample 𝑖 at variant 𝑗. Then imagine a
coarse grid is laid on top of matrix 𝑋 such that matrix cells within the same coarse grid cell are all
assigned to the same block. Each block 𝑥 is indexed by a sample block ID (corresponding to a list
of rows belonging to the block) and a header block ID (corresponding to a list of columns belonging
to the block). The sample block IDs are generally just integers 0 through the number of sample
blocks. The header block IDs are strings of the form ‘chr_C_block_B’, which refers to the Bth block
on chromosome C. The Spark DataFrame representing this block matrix can be thought of as the
transpose of each block, i.e., 𝑥𝑇 , all stacked one atop another. Each row in the DataFrame represents
the values from a particular column of 𝑋 for the samples corresponding to a particular sample block.

6.3. GloWGR: Whole Genome Regression 51

glow Documentation, Release 2.1.0-SNAPSHOT

The fields in the DataFrame and their content for a given row are as follows:

• sample_block: An ID assigned to the block 𝑥 containing the group of samples repre-
sented on this row

• header_block: An ID assigned to the block 𝑥 containing this header

• header: The column name in the conceptual genotype matrix 𝑋

• size: The number of individuals in the sample block

• values: Genotype values for the header in this sample block. If the matrix is sparse,
contains only non-zero values.

• position: An integer assigned to this header that specifies the correct sort order for the
headers in this block

52 Chapter 6. Tertiary Analysis

glow Documentation, Release 2.1.0-SNAPSHOT

• mu: The mean of the genotype values for this header

• sig: The standard deviation of the genotype values for this header

Warning: Variant rows in the input DataFrame whose genotype values are uniform across
all samples are filtered from the output block genotype matrix.

• Sample block mapping: The sample block mapping is a python dictionary containing key-value
pairs, where each key is a sample block ID and each value is a list of sample IDs contained in that
sample block. The order of these IDs match the order of the values arrays in the block genotype
DataFrame.

Example

from glow.wgr import RidgeReduction, RidgeRegression, LogisticRidgeRegression, block_
→˓variants_and_samples, get_sample_ids
from pyspark.sql.functions import col, lit

variants_per_block = 1000
sample_block_count = 10
sample_ids = get_sample_ids(genotypes)
block_df, sample_blocks = block_variants_and_samples(

genotypes, sample_ids, variants_per_block, sample_block_count)

6.3.5 Stage 2. Dimensionality reduction

Having the block genotype matrix, the first stage is to apply a dimensionality reduction to the block matrix 𝑋 using the
RidgeReduction class. After RidgeReduction is initialized, dimensionality reduction is accomplished within two
steps:

1. Model fitting, performed by the RidgeReduction.fit function, which fits multiple ridge models within each
block 𝑥.

2. Model transformation, performed by the RidgeReduction.transform function, which produces a new block
matrix where each column represents the prediction of one ridge model applied within one block.

This approach to model building is generally referred to as stacking. We call the starting block genotype matrix the
level 0 matrix in the stack, denoted by 𝑋0, and the output of the ridge reduction step the level 1 matrix, denoted by
𝑋1. As one of its initialization, the RidgeReduction class generates (or receives) a list of ridge regularization values
(here referred to as alpha). Since ridge models are indexed by these alpha values, RidgeReduction will generate one
ridge model per value of alpha provided, which in turn will produce one column per block in 𝑋0. Therefore, the final
dimensions of 𝑋1 for a single phenotype will be 𝑁 × (𝐿×𝐾), where 𝐿 is the number of header blocks in 𝑋0 and 𝐾
is the number of alpha values provided to RidgeReduction. In practice, we can estimate a span of alpha values in a
reasonable order of magnitude based on guesses at the heritability of the phenotype we are fitting.

6.3. GloWGR: Whole Genome Regression 53

glow Documentation, Release 2.1.0-SNAPSHOT

1. Initialization

The RidgeReduction is initialized by receiving the following parameters:

Parameters

• block_df: Spark DataFrame representing the beginning block matrix

• label_df: Pandas DataFrame containing the target labels used in fitting the ridge models

• sample_blocks: Dictionary containing a mapping of sample block IDs to a list of corresponding sample IDs

• covariate_df: Pandas DataFrame containing covariates to be included in every model in the stacking ensemble
(optional)

• add_intercept: Whether an intercept column (all ones) should be added to the covariates (as the first column)
(optional, default = True).

• alphas: a numpy array of alpha values used in the ridge reduction (optional). If not provided GloWGR generates
them.

• label_type: String to determine type treatment of labels (optional). It can be 'detect' (default), 'binary',
or 'quantitative'.

Notice that the user can specify that an intercept column is added to the covariates matrix or not.

If alpha values are not provided, they will be generated based on the number of unique headers in the blocked genotype
matrix 𝑋0, denoted by ℎ0, and a set of heritability values. More specifically,

𝛼 = ℎ0

[︀ 1

0.99
,

1

0.75
,

1

0.50
,

1

0.25
,

1

0.01

]︀
Moreover, RidgeReduction has the ability to detect whether it should treat phenotypes as quantitative or binary.
If label_type='detect', the problem will be treated as binary-phenotype problem if all phenotypes vectors are
binary. Otherwise, the problem will be treated as a quantitative-phenotype problem. The user can force the type of the
phenotypes by changing the value of label_type to 'binary' or 'quantitative'. Note that forcing quantitative
phenotype values to be treated as binary will throws an error.

Example

reduction = RidgeReduction(block_df, label_df, sample_blocks, covariate_df)

2. Model fitting

Reduction model fitting is performed calling the RidgeReduction.fit() function (no parameters needed). The
reduction of a block 𝑥0 from 𝑋0 to the corresponding block 𝑥1 from 𝑋1 is accomplished by the matrix multiplication
𝑥0𝐵 = 𝑥1, where 𝐵 is an estimated coefficient matrix of size 𝑚 × 𝐾, where 𝑚 is the number of columns in block
𝑥0 and 𝐾 is the number of alpha values used in the reduction. As an added wrinkle, if the ridge reduction is being
performed against multiple phenotypes at once, each phenotype will have its own 𝐵, and for convenience we panel
these next to each other in the output into a single matrix, so 𝐵 in that case has dimensions 𝑚× (𝐾 × 𝑃) where 𝑃 is
the number of phenotypes. Each matrix 𝐵 is specific to a particular block in 𝑋0, so the Spark DataFrame produced by
the RidgeReduction.fit() can be thought of matrices 𝐵 from all the blocks, one stacked atop another.

54 Chapter 6. Tertiary Analysis

glow Documentation, Release 2.1.0-SNAPSHOT

Return

A model DataFrame with these columns:

• header_block: An ID assigned to the block 𝑥0 to the coefficients in this row

• sample_block: An ID assigned to the block 𝑥0 containing the group of samples represented on this row

• header: The column name in the conceptual genotype matrix 𝑋0 that corresponds to a particular row in the
coefficient matrix 𝐵

• alphas: List of alpha names corresponding to the columns of 𝐵

• labels: List of labels (i.e., phenotypes) corresponding to the columns of 𝐵

• coefficients: List of the actual values from a row in 𝐵

Example

model_df = reduction.fit()

3. Model transformation

After fitting, the RidgeReducer.transform method can be used to generate 𝑋1 from 𝑋0.

Parameters

• block_df: Spark DataFrame representing the beginning block matrix

• label_df: Pandas DataFrame containing the target labels used in fitting the ridge models

• sample_blocks: Dictionary containing a mapping of sample block IDs to a list of corresponding sample IDs

• model_df: Spark DataFrame produced by the RidgeReducer.fit function, representing the reducer model

• covariate_df: Pandas DataFrame containing covariates to be included in every model in the stacking ensemble
(optional).

Return

The output of the transformation is analogous to the block matrix DataFrame we started with. The main difference
is that, rather than representing a single block matrix, it represents multiple block matrices, with one such matrix per
label (phenotype). The schema of this block matrix DataFrame (reduced_block_df) will be as follows:

|-- header: string (nullable = true)
|-- size: integer (nullable = true)
|-- values: array (nullable = true)
| |-- element: double (containsNull = true)
|-- header_block: string (nullable = true)
|-- sample_block: string (nullable = true)
|-- sort_key: integer (nullable = true)
|-- mu: double (nullable = true)
|-- sig: double (nullable = true)

(continues on next page)

6.3. GloWGR: Whole Genome Regression 55

glow Documentation, Release 2.1.0-SNAPSHOT

(continued from previous page)

|-- alpha: string (nullable = true)
|-- label: string (nullable = true)

This schema is the same as the schema of the DataFrame we started with (block_df) with two additional columns:

• alpha: Name of the alpha value used in fitting the model that produced the values in this row

• label: The label corresponding to the values in this row. Since the genotype block matrix 𝑋0 is phenotype-
agnostic, the rows in block_df were not restricted to any label (phenotype), but the level 1 block matrix 𝑋1

represents ridge model predictions for the labels the reducer was fit with, so each row is associated with a specific
label.

The headers in the 𝑋1 block matrix are derived from a combination of the source block in 𝑋0, the alpha value used in
fitting the ridge model, and the label they were fit with. These headers are assigned to header blocks that correspond
to the chromosome of the source block in 𝑋0.

Example

reduced_block_df = reduction.transform()

Performing fit and transform in a single step

If the block genotype matrix, phenotype DataFrame, sample block mapping, and covariates are constant for both the
model fitting and transformation, the RidgeReducer.fit_transform function can be used to do fit and transform in
a single step

Example

reduced_block_df = reduction.fit_transform()

6.3.6 Stage 3. Estimate phenotypic predictors

At this stage, the block matrix 𝑋1 is used to fit a final predictive model that can generate phenotype predictions 𝑦 using

• For quantitative phenotypes: the RidgeRegression class.

• For binary phenotypes: the LogisticRegression class.

1. Initialization

• For quantitative phenotypes: As with the RidgeReducer class, the RidgeRegression class is initialized with
a list of alpha values. If alpha values are not provided, they will be generated during RidgeRegression.fit
based on the unique number of headers in the blocked matrix 𝑋1, denoted by ℎ1, and a set of heritability values.

𝛼 = ℎ1

[︀ 1

0.99
,

1

0.75
,

1

0.50
,

1

0.25
,

1

0.01

]︀
These values are only sensible if the phenotypes are on the scale of one.

Example

56 Chapter 6. Tertiary Analysis

glow Documentation, Release 2.1.0-SNAPSHOT

regression = RidgeRegression.from_ridge_reduction(reduction)

• For binary phenotypes: Everything is the same except that LogisticRegression class is used instead of
RidgeRegression.

Example

regression = LogisticRidgeRegression.from_ridge_reduction(reduction)

2. Model fitting

Model fitting is performed using

• For quantitative phenotypes: the RidgeRegression.fit function.

• For binary phenotypes: the LogisticRegression.fit function.

This works much in the same way as the RidgeReducer model fitting, except that it returns an additional DataFrame
that reports the cross validation results in optimizing the hyperparameter alpha.

Parameters

• block_df: Spark DataFrame representing the reduced block matrix

• label_df: Pandas DataFrame containing the target labels used in fitting the ridge models

• sample_blocks: Dictionary containing a mapping of sample block IDs to a list of corresponding sample IDs

• covariate_df: Pandas DataFrame containing covariates to be included in every model in the stacking ensemble
(optional)

Return

The first output is a model DataFrame analogous to the model DataFrame provided by the RidgeReducer. An impor-
tant difference is that the header block ID for all rows will be ‘all’, indicating that all headers from all blocks have been
used in a single fit, rather than fitting within blocks.

The second output is a cross validation report DataFrame containing the results of the hyperparameter (i.e., alpha)
value optimization routine. The fields in this DataFrame are:

• label: This is the label corresponding to the cross cv results on the row.

• alpha: The name of the optimal alpha value

• r2_mean: The mean out of fold r2 score for the optimal alpha value

6.3. GloWGR: Whole Genome Regression 57

glow Documentation, Release 2.1.0-SNAPSHOT

Example

Assuming regression is initialized to RidgeRegression (for quantitative phenotypes) or LogisticRegression
(for binary phenotypes) as described above, fitting will be done as follows:

model_df, cv_df = regression.fit()

3. Model transformation

After fitting the model, the model DataFrame and cross validation DataFrame are used to apply the model to the block
matrix DataFrame to produce predictions (𝑦) for each label and sample. This is done using

• For quantitative phenotypes: the RidgeRegression.transform or RidgeRegression.transform_loco
method.

• For binary phenotypes: the LogisticRegression.transform or LogisticRegression.
transform_loco method.

Here, we describe the leave-one-chromosome-out (LOCO) approach. The input and output of the transform_loco
function in RidgeRegression and LogisticRegression are as follows:

Parameters

• block_df: Spark DataFrame representing the reduced block matrix

• label_df: Pandas DataFrame containing the target labels used in the fitting step

• sample_blocks: Dictionary containing a mapping of sample block IDs to a list of corresponding sample IDs

• model_df: Spark DataFrame produced by the RidgeRegression.fit function (for quantitative phenotypes)
or LogisticRegression.fit function (for binary phenotypes), representing the reducer model

• cv_df: Spark DataFrame produced by the RidgeRegression.fit function (for quantitative phenotypes) or
LogisticRegression.fit function (for binary phenotypes), containing the results of the cross validation rou-
tine

• covariate_df:

– For quantitative phenotypes: Pandas DataFrame containing covariates to be included in every model in
the stacking ensemble (optional).

– For binary phenotypes:

∗ If response='linear', covariate_df should not be provided.

Tip: This is because in any follow-up GWAS analysis involving penalization, such as Firth
logistic regression, only the linear terms containing genotypes will be used as an offset and
covariate coefficients will be refit.

∗ If response='sigmoid', a Pandas DataFrame containing covariates to be included in every model
in the stacking ensemble.

• response (for binary phenotypes only): String specifying the desired output. It can be 'linear' (default) to
specify the direct output of the linear WGR model (default) or 'sigmoid' to specify predicted label probabilities.

• chromosomes: List of chromosomes for which to generate a prediction (optional). If not provided, the chromo-
somes will be inferred from the block matrix.

58 Chapter 6. Tertiary Analysis

glow Documentation, Release 2.1.0-SNAPSHOT

Return

• For quantitative phenotypes: Pandas DataFrame shaped like label_df, representing the resulting phenotypic
predictors 𝑦, indexed by the sample ID and chromosome with each column representing a single phenotype.

• For binary phenotypes:

– If response='linear': Similar to above but the phenotypic predictor captures only the terms containing
genotypes (and not covariates)

– If response='sigmoid': Pandas DataFrame with the same structure as above containing the predicted
probabilities.

Example

Assuming regression is initialized to RidgeRegression (for quantitative phenotypes) or LogisticRegression
(for binary phenotypes) as described above, fitting will be done as follows:

For quantitative phenotypes:

y_hat_df = regression.transform_loco()

For binary phenotypes:

y_hat_df = regression.transform_loco()

6.3.7 Proceed to GWAS

GloWGR GWAS functionality can be used to perform genome-wide association study using the phenotypic predictors
to correct for polygenic effects.

6.3.8 Troubleshooting

If you encounter limits related to memory allocation in PyArrow, you may need to tune the number of alphas, number
of variants per block, and/or the number of sample blocks. The default values for these hyperparameters are tuned for
500,000 variants and 500,000 samples.

The following values must all be lower than 132,152,839:

• (# alphas) * (# variants / # variants per block) * (# samples / # sample blocks)

• (# alphas * # variants / # variants per block)^2

6.3.9 Example notebook

Two example notebooks are provided below, the first for quantitative phenotypes and the second for binary phenotypes.

6.3. GloWGR: Whole Genome Regression 59

glow Documentation, Release 2.1.0-SNAPSHOT

GloWGR notebook for quantitative phenotypes

<div class='embedded-notebook'> How
to run a notebook Get notebook
link</p> <div class='embedded-notebook-container'> <div class='loading-spinner'></div> <iframe
src="../_static/notebooks/tertiary/glowgr.html" id='4790743669866528967' height="1000px" width="100%"
style="overflow-y:hidden;" scrolling="no"></iframe> </div> </div>

GloWGR notebook for binary phenotypes

<div class='embedded-notebook'> How
to run a notebook Get note-
book link</p> <div class='embedded-notebook-container'> <div class='loading-spinner'></div> <iframe
src="../_static/notebooks/tertiary/binaryglowgr.html" id='-7802855449703784249' height="1000px" width="100%"
style="overflow-y:hidden;" scrolling="no"></iframe> </div> </div>

6.4 GloWGR: Genome-Wide Association Study (GWAS) Regression
Tests

Glow contains functions for performing regression analyses used in genome-wide association studies (GWAS). These
functions are best used in conjunction with the GloWGR whole genome regression method, but also work as standalone
analysis tools.

Tip: Glow automatically converts literal one-dimensional and two-dimensional numpy ndarray s of double s to
array<double> and spark.ml DenseMatrix respectively.

6.4.1 Linear regression

linear_regression performs a linear regression association test optimized for performance in a GWAS setting.
You provide a Spark DataFrame containing the genetic data and Pandas DataFrames with the phenotypes, covariates,
and optional offsets (typically predicted phenotypes from GloWGR). The function returns a Spark DataFrame with
association test results for each (variant, phenotype) pair.

Each worker node in the cluster tests a subset of the total variant dataset. Multiple phenotypes and variants are tested
together to take advantage of efficient matrix-matrix linear algebra primitives.

Example

import glow
import numpy as np
import pandas as pd
from pyspark.sql import Row
from pyspark.sql.functions import col, lit

Read in VCF file
variants = spark.read.format('vcf').load(genotypes_vcf)

(continues on next page)

60 Chapter 6. Tertiary Analysis

glow Documentation, Release 2.1.0-SNAPSHOT

(continued from previous page)

genotype_states returns the number of alt alleles for each sample
mean_substitute replaces any missing genotype states with the mean of the non-missing␣
→˓states
genotypes = (glow.transform('split_multiallelics', variants)

.withColumn('gt', glow.mean_substitute(glow.genotype_states(col('genotypes'))))

.select('contigName', 'start', 'names', 'gt')

.cache())

Read covariates from a CSV file
covariates = pd.read_csv(covariates_csv, index_col=0)

Read phenotypes from a CSV file
continuous_phenotypes = pd.read_csv(continuous_phenotypes_csv, index_col=0)

Run linear regression test
lin_reg_df = glow.gwas.linear_regression(genotypes, continuous_phenotypes, covariates,␣
→˓values_column='gt')

For complete parameter usage information, check out the API reference for glow.gwas.linear_regression().

Note: Glow also includes a SQL-based function for performing linear regression. However, this function only pro-
cesses one phenotype at time, and so performs more slowly than the batch linear regression function documented above.
To read more about the SQL-based function, see the docs for glow.linear_regression_gwas().

6.4.2 Logistic regression

logistic_regression performs a logistic regression hypothesis test optimized for performance in a GWAS setting.

Example

import glow
import numpy as np
import pandas as pd
from pyspark.sql import Row
from pyspark.sql.functions import col, lit

Read in VCF file
variants = spark.read.format('vcf').load(genotypes_vcf)

genotype_states returns the number of alt alleles for each sample
mean_substitute replaces any missing genotype states with the mean of the non-missing␣
→˓states
genotypes = (glow.transform('split_multiallelics', variants)

.withColumn('gt', glow.mean_substitute(glow.genotype_states(col('genotypes'))))

.select('contigName', 'start', 'names', 'gt')

.cache())

Read covariates from a CSV file
covariates = pd.read_csv(covariates_csv, index_col=0)

(continues on next page)

6.4. GloWGR: Genome-Wide Association Study (GWAS) Regression Tests 61

glow Documentation, Release 2.1.0-SNAPSHOT

(continued from previous page)

Read phenotypes from a CSV file
binary_phenotypes = pd.read_csv(binary_phenotypes_csv, index_col=0)

Run logistic regression test with approximate Firth correction for p-values below 0.05
log_reg_df = glow.gwas.logistic_regression(
genotypes,
binary_phenotypes,
covariates,
correction='approx-firth',
pvalue_threshold=0.05,
values_column='gt'

)

For complete parameter usage information, check out the API reference for glow.gwas.logistic_regression().

Note: Glow also includes a SQL-based function for performing logistic regression. However, this function only
processes one phenotype at time, and so performs more slowly than the batch logistic regression function documented
above. To read more about the SQL-based function, see the docs for glow.logistic_regression_gwas().

6.4.3 Offset

The linear and logistic regression functions accept GloWGR phenotypic predictions (either global or per chromosome)
as an offset.

continuous_offsets = pd.read_csv(continuous_offset_csv, index_col=0)
lin_reg_df = glow.gwas.linear_regression(
genotypes,
continuous_phenotypes,
covariates,
offset_df=continuous_offsets,
values_column='gt'

)

binary_offsets = pd.read_csv(binary_offset_csv, index_col=0)
log_reg_df = glow.gwas.logistic_regression(
genotypes,
binary_phenotypes,
covariates,
offset_df=binary_offsets,
correction='approx-firth',
pvalue_threshold=0.05,
values_column='gt'

)

Tip: The offset parameter is especially useful in incorporating the results of GloWGR with phenotypes in GWAS.
Please refer to GloWGR: Whole Genome Regression for details and example notebook.

62 Chapter 6. Tertiary Analysis

glow Documentation, Release 2.1.0-SNAPSHOT

Example notebooks and blog post

GloWGR: GWAS for quantitative traits

<div class='embedded-notebook'> How
to run a notebook Get
notebook link</p> <div class='embedded-notebook-container'> <div class='loading-spinner'></div>
<iframe src="../_static/notebooks/tertiary/gwas-quantitative.html" id='-6880991519623925279' height="1000px"
width="100%" style="overflow-y:hidden;" scrolling="no"></iframe> </div> </div>

GloWGR: GWAS for binary traits

<div class='embedded-notebook'> How
to run a notebook Get note-
book link</p> <div class='embedded-notebook-container'> <div class='loading-spinner'></div> <iframe
src="../_static/notebooks/tertiary/gwas-binary.html" id='-5213239791780043472' height="1000px" width="100%"
style="overflow-y:hidden;" scrolling="no"></iframe> </div> </div>

A detailed example and explanation of a GWAS workflow is available here.

6.4. GloWGR: Genome-Wide Association Study (GWAS) Regression Tests 63

https://databricks.com/blog/2019/09/20/engineering-population-scale-genome-wide-association-studies-with-apache-spark-delta-lake-and-mlflow.html

glow Documentation, Release 2.1.0-SNAPSHOT

64 Chapter 6. Tertiary Analysis

CHAPTER

SEVEN

TROUBLESHOOTING

• Job is slow or OOMs (throws an OutOfMemoryError) while using an aggregate like collect_list or
sample_call_summary_stats

– Try disabling the ObjectHashAggregate by setting spark.sql.execution.
useObjectHashAggregateExec to false

• Job is slow or OOMs while writing to partitioned table

– This error can occur when reading from highly compressed files. Try decreasing spark.files.
maxPartitionBytes to a smaller value like 33554432 (32MB)

• My VCF looks weird after merging VCFs and saving with bigvcf

– When saving to a VCF, the samples in the genotypes array must be in the same order for each row. This
ordering is not guaranteed when using collect_list to join multiple VCFs. Try sorting the array using
sort_array.

• Glow’s behavior changed after a release

– See the Glow release notes. If the Glow release involved a Spark version change, see the Spark migration
guide.

• com.databricks.sql.io.FileReadException: Error while reading file

– When Glow is registered to access transform functions this also overrides the Spark Context. This can
interfere with the checkpointing functionality in Delta Lake in a Databricks environment. To resolve please
reset the runtime configurations via spark.sql("RESET") after running Glow transform functions and
before checkpointing to Delta Lake, then try again.

65

https://github.com/apache/spark/commit/27daf6bcde782ed3e0f0d951c90c8040fd47e985
https://github.com/projectglow/glow/releases
https://spark.apache.org/docs/latest/migration-guide.html
https://spark.apache.org/docs/latest/migration-guide.html

glow Documentation, Release 2.1.0-SNAPSHOT

66 Chapter 7. Troubleshooting

CHAPTER

EIGHT

CONTRIBUTING

Glow began as an industry collaboration between databricks and the Regeneron Genetics Center. Glow enables scien-
tists and engineers work together to solve genomics problems with data.

Contributing is easy, and we will collaborate with you to extend the project.

The sections below detail how to contribute.

8.1 Raise Issues

If you get stuck or hit errors when using glow, please raise an issue. Even if you solve the problem, there’s a good
chance someone else will encounter it.

Important: Please raise issues!

8.2 Contribute to the codebase

To contribute to glow, please fork the library and create a branch. Make your changes and create a pull request. It’s
easy to get started.

Important: Please sign off all commits!

git commit -m "initial commit" --signoff

8.2.1 1. Modify or add notebooks

As you work through the example notebooks in the docs, please document issues. If you solve problems or improve
code, please help contribute changes back. That way others will benefit and become more productive.

Export your notebook as html into the relevant directory under docs/source/_static/notebooks.

And run this python script (swapping the html file out for your own).

python3 docs/dev/gen-nb-src.py --html docs/source/_static/notebooks/tertiary/pipe-
→˓transformer-vep.html

67

https://github.com/projectglow/glow/issues

glow Documentation, Release 2.1.0-SNAPSHOT

The Glow workflow is tested in a nightly integration test in Databricks. If you add notebooks or rename them, please
also edit the workflow definition json located in docs/dev/.

8.2.2 2. Improve the documentation

If you add a notebook, please reference it in the documentation. Either to an existing docs page, or create a new one.
Other contributions to the docs include,

• Tips for glow

– Spark cluster configuration and tuning

– glow use cases

• Troubleshooting guides and gotchas

• Fix typos, hyperlinks or paths

• Better explanations of

– what code snippets in the docs mean?

– what cells in notebooks mean?

• Unit tests for notebook code

• New use cases

To build the docs locally,

first create the conda environment:

cd docs
conda env create -f source/environment.yml

activate the glow docs conda environment:

conda activate glow-docs

build the docs:

make livehtml

connect to the local server via your browser at: http://127.0.0.1:8000

8.2.3 3. Contribute new features / bug fixes

Here are example pull requests for new features or bug fixes that touch different aspects of the codebase,

• Scala

• Python functions

• Python & R notebooks

• Data schemas

• Benchmarks

Much of the codebase is in Scala, however we are increasingly moving to Python. Near-term focus is around integrating
with Delta streaming and sharing.

68 Chapter 8. Contributing

https://github.com/projectglow/glow/blob/main/docs/dev
https://github.com/projectglow/glow/pull/418
https://github.com/projectglow/glow/pull/416
https://github.com/projectglow/glow/pull/431
https://github.com/projectglow/glow/pull/402
https://github.com/projectglow/glow/pull/440

CHAPTER

NINE

BLOG POSTS

9.1 Introducing GloWGR: An industrial-scale, ultra-fast and sensitive
method for genetic association studies

Authors: Leland Barnard, Henry Davidge, Karen Feng, Joelle Mbatchou, Boris Boutkov, Kiavash Kianfar, Lukas
Habegger, Jonathan Marchini, Jeffrey Reid, Evan Maxwell, Frank Austin Nothaft

June 22, 2020

The industry partnership between Regeneron and Databricks is enabling innovations in genomics data processing and
analysis. Today, we announce that we are making a new whole genome regression method available to the open source
bioinformatics community as part of Project Glow.

Large cohorts of individuals with paired clinical and genome sequence data enable unprecedented insight into human
disease biology. Population studies such as the UK Biobank, Genomics England, or Genome Asia 100k datasets
are driving a need for innovation in methods for working with genetic data. These methods include genome wide
association studies (GWAS), which enrich our understanding of the genetic architecture of the disease and are used
in cutting-edge industrial applications, such as identifying therapeutic targets for drug development. However, these
datasets pose novel statistical and engineering challenges. The statistical challenges have been addressed by tools such
as SAIGE and Bolt-LMM, but they are difficult to set up and prohibitively slow to run on biobank-scale datasets.

In a typical GWAS, a single phenotype such as cholesterol levels or diabetes diagnosis status is tested for statisti-
cal association with millions of genetic variants across the genome. Sophisticated mixed model and whole genome
regression-based approaches have been developed to control for relatedness and population structure inherent to large
genetic study populations when testing for genetic associations; several methods such as BOLT-LMM, SAIGE, and
fastGWA use a technique called whole genome regression to sensitively analyze a single phenotype in biobank-scale
projects. However, deeply phenotyped biobank-scale projects can require tens of thousands of separate GWASs to
analyze the full spectrum of clinical variables, and current tools are still prohibitively expensive to run at scale. In
order to address the challenge of efficiently analyzing such datasets, the Regeneron Genetics Center has just developed
a new approach for the whole-genome regression method that enables running GWAS across upwards of hundreds of
phenotypes simultaneously. This exciting new tool provides the same superior test power as current state-of-the-art
methods at a small fraction of the computational cost.

This new whole genome regression (WGR) approach recasts the whole genome regression problem to an ensemble
model of many small, genetic region-specific models. This method is described in a preprint released today, and im-
plemented in the C++ tool regenie. As part of the collaboration between the Regeneron Genetics Center and Databricks
on the open source Project Glow, we are excited to announce GloWGR, a lightning-fast and highly scalable distributed
implementation of this WGR algorithm, designed from the ground up with Apache Spark and integrated with other
Glow functionality. With GloWGR, performing WGR analyses on dozens of phenotypes can be accomplished simul-
taneously in a matter of minutes, a task that would require hundreds or thousands of hours with existing state-of-the-art
tools. Moreover, GloWGR distributes along both the sample and genetic variant matrix dimensions, allowing for linear
scaling and a high degree of data and task parallelism. GloWGR plugs seamlessly into any existing GWAS workflow,
providing an immediate boost to association detection power at a negligible computational cost.

69

https://github.com/LelandBarnard
https://github.com/henrydavidge
https://github.com/karenfeng
https://github.com/joellesophya
https://github.com/bboutkov
https://github.com/kianfar77
https://github.com/habeggel
https://github.com/habeggel
https://github.com/jmarchini
https://github.com/jgreid
https://github.com/emaxwell
https://github.com/fnothaft
https://www.ukbiobank.ac.uk/
https://www.genomicsengland.co.uk/
https://genomeasia100k.org/
https://www.biorxiv.org/content/10.1101/2020.06.02.129908v1
https://www.nature.com/articles/ng.3190
https://www.nature.com/articles/s41588-018-0184-y/
https://www.nature.com/articles/s41588-019-0530-8
https://www.biorxiv.org/content/10.1101/2020.06.19.162354v1
https://rgcgithub.github.io/regenie/
http://projectglow.io

glow Documentation, Release 2.1.0-SNAPSHOT

9.1.1 Achieving High Accuracy and Efficiency with Whole-Genome Regression

This whole genome regression tool has a number of virtues. First, it is more efficient: as implemented in the single
node, open-source regenie tool, whole genome regression is orders of magnitude faster than either SAIGE, Bolt-LMM,
or fastGWA, while producing equivalent results (Figure 1). Second, it is straightforward to parallelize: in the next
section, we describe how we implemented whole genome regression using Apache Spark™ in the open-source Project
Glow.

Fig. 9.1: Comparison of GWAS results for three quantitative phenotypes from the UK Biobank project, produced by
REGENIE, BOLT-LMM, and fastGWA.

In addition to performance considerations, the whole genome regression approach produces covariates that are com-
patible with standard GWAS methods, and which eliminate spurious associations caused by population structure that
are seen with traditional approaches. The Manhattan plots in figure 2 below compare the results of a traditional linear
regression GWAS using standard covariates, to a linear regression GWAS using the covariates generated by WGR. This
flexibility of GloWGR is another tremendous advantage over existing GWAS tools, and will allow for a wide variety
of exciting extensions to the association testing framework that is already available in Glow.

Figure 3 shows performance comparisons between GloWGR, REGENIE, BoltLMM, and fastGWA. We benchmarked
the whole genome regression test implemented in Glow against the C++ implementation available in the single-node
regenie tool to validate the accuracy of the method. We found that the two approaches achieve statistically identical
results. We also found that the Apache Spark™ based implementation in Glow scales linearly with the number of nodes
used.

9.1.2 Scaling Whole Genome Regression within Project Glow

Performing WGR analysis with GloWGR has 5 steps:

• Dividing the genotype matrix into contiguous blocks of SNPs (~1000 SNPs per block, referred to as loci)

• Fitting multiple ridge models (~10) with varying ridge penalties within each locus

• Using the resulting ridge models to reduce the locus from a matrix of 1,000 features to 10 features (each feature
is the prediction of one of the ridge models)

• Pooling the resulting features of all loci into a new reduced feature matrix X (N individuals by L loci x J ridge
models per locus)

70 Chapter 9. Blog Posts

https://rgcgithub.github.io/regenie/
https://rgcgithub.github.io/regenie/
http://projectglow.io
http://projectglow.io
https://rgcgithub.github.io/regenie/
https://rgcgithub.github.io/regenie/

glow Documentation, Release 2.1.0-SNAPSHOT

Fig. 9.2: Comparison of GWAS results of the quantitative phenotype bilirubin from the UK Biobank project, evaluated
using standard linear regression and linear regression with GloWGR. The heightened peaks in the highlighted regions
show the increase in power to detect subtler associations that is gained with GloWGR.

Fig. 9.3: Left: end-to-end GWAS runtime comparison for 50 quantitative traits from the UK Biobank project. Right:
Run time comparison to fit WGR models against 50 quantitative phenotypes from the UK Biobank project. GloWGR
scales well with cluster size, allowing for modeling of dozens of phenotypes in minutes without costing additional CPU
efficiency. The exact list of phenotypes and computation environment details can be found here.

9.1. Introducing GloWGR: An industrial-scale, ultra-fast and sensitive method for genetic
association studies

71

https://www.biorxiv.org/content/10.1101/2020.06.19.162354v1

glow Documentation, Release 2.1.0-SNAPSHOT

• Fitting a final regularized model from X for the genome-wide contribution to phenotype Y.

Glow provides the easy-to-use abstractions shown in figure 4 for transforming large genotype matrices into the blocked
matrix (below, left) and then fitting the whole genome regression model (below, right). These can be applied to data
loaded in any of the genotype file formats that Glow understands, including VCF, Plink, and BGEN formats, as well as
genotype data stored in Apache Spark™ native file formats like Delta Lake.

Fig. 9.4: Creating a matrix grouped by locus and fitting mixed ridge regression models using GloWGR

Glow provides an implementation of the WGR method for quantitative traits, and a binary trait variant is in progress.
The covariate-adjusted phenotype created by GloWGR can be written out as an Apache Parquet ™ or Delta Lake
dataset, which can easily be loaded by and analyzed within Apache Spark, pandas, and other tools. Ultimately, using
the covariates computed with WGR in a genome-wide association study is as simple as running the command shown
in Figure 5, below. This command is run by Apache Spark™, in parallel, across all of the genetic markers under test.

Fig. 9.5: Updating phenotypes with the WGR results and running a GWAS using the built-in association test methods
from Glow

9.1.3 Join us and try whole genome regression in Glow!

Whole genome regression is available in Glow, which is an open source project hosted on Github, with an Apache
2 license. You can get started with this notebook that shows how to use GloWGR on data from 1,000 Genomes, by
reading the preprint, by reading our project docs, or you can create a fork of the repository to start contributing code
today.

72 Chapter 9. Blog Posts

https://glow.readthedocs.io/en/latest/etl/variant-data.html
https://delta.io/
http://parquet.apache.org
https://delta.io/
http://spark.apache.org
https://pandas.pydata.org/
https://glow.readthedocs.io/en/latest/tertiary/regression-tests.html
https://glow.readthedocs.io/en/latest/tertiary/regression-tests.html
http://projectglow.io
https://github.com/projectglow/glow
https://glow.readthedocs.io/en/latest/tertiary/whole-genome-regression.html
https://www.biorxiv.org/content/10.1101/2020.06.19.162354v1
http://projectglow.io
https://github.com/projectglow/glow/fork

glow Documentation, Release 2.1.0-SNAPSHOT

9.2 Glow 0.4 Enables Integration of Genomic Variant and Annotation
Data

Author: Kiavash Kianfar
June 9, 2020

Glow 0.4 was released on May 20, 2020. This blog focuses on the highlight of this release, the newly introduced
capability to ingest genomic annotation data from the GFF3 (Generic Feature Format Version 3) flat file format. This
release also includes other feature and usability improvements, which will be briefly reviewed at the end of this blog.

GFF3 is a sequence annotation flat file format proposed by the Sequence Ontology Project in 2013, which since has
become the de facto format for genome annotation and is widely used by genome browsers and databases such as NCBI
RefSeq and GenBank. GFF3, a 9-column tab-separated text format, typically carries the majority of the annotation
data in the ninth column, called attributes, as a semi-colon-separated list of <tag>=<value> entries. As a result,
although GFF3 files can be read as Spark DataFrames using Spark SQL’s standard csv data source, the schema of the
resulting DataFrame would be quite unwieldy for query and data manipulation of annotation data, because the whole
list of attribute tag-value pairs for each sequence will appear as a single semi-colon-separated string in the attributes
column of the DataFrame.

Glow 0.4 adds the new and flexible gff Spark SQL data source to address this challenge and create a smooth GFF3
ingest and query experience. While reading the GFF3 file, the gff data source parses the attributes column of
the file to create an appropriately typed column for each tag. In each row, this column will contain the value corre-
sponding to that tag in that row (or null if the tag does not appear in the row). Consequently, all tags in the GFF3
attributes column will have their own corresponding column in the Spark DataFrame, making annotation data query
and manipulation much easier.

9.2.1 Ingesting GFF3 Annotation Data

Like any other Spark data source, reading GFF3 files using Glow’s gff data source can be done in a single line of
code. As an example, we can ingest the annotations of the Homo Sapiens genome assembly GRCh38.p13 from a GFF3
file. Here, we have also filtered the annotations to chromosome 22 in order to use the resulting annotations_df
DataFrame (Fig. 9.6) in continuation of our example. The annotations_df alias is for the same purpose as well.

import glow
spark = glow.register(spark)

gff_path = '/databricks-datasets/genomics/gffs/GCF_000001405.39_GRCh38.p13_genomic.gff.
→˓bgz'

annotations_df = spark.read.format('gff').load(gff_path) \
.filter("seqid = 'NC_000022.11'") \
.alias('annotations_df')

In addition to reading uncompressed .gff files, the gff data source supports all compression formats supported by
Spark’s csv data source, including .gz and .bgz. It is strongly recommended to use splittable compression formats
like .bgz instead of .gz for better parallelization of the read process.

9.2. Glow 0.4 Enables Integration of Genomic Variant and Annotation Data 73

https://github.com/kianfar77
https://github.com/The-Sequence-Ontology/Specifications/blob/master/gff3.md
https://github.com/The-Sequence-Ontology/Specifications/blob/master/gff3.md
http://www.sequenceontology.org/
https://www.ncbi.nlm.nih.gov/refseq/
https://www.ncbi.nlm.nih.gov/genbank/
https://github.com/The-Sequence-Ontology/Specifications/blob/master/gff3.md

glow Documentation, Release 2.1.0-SNAPSHOT

Fig. 9.6: A small section of the annotations_df DataFrame

9.2.2 Schema

Let us have a closer look at the schema of the resulting DataFrame, which was automatically inferred by Glow’s gff
data source:

annotations_df.printSchema()

root
|-- seqId: string (nullable = true)
|-- source: string (nullable = true)
|-- type: string (nullable = true)
|-- start: long (nullable = true)
|-- end: long (nullable = true)
|-- score: double (nullable = true)
|-- strand: string (nullable = true)
|-- phase: integer (nullable = true)
|-- ID: string (nullable = true)
|-- Name: string (nullable = true)
|-- Parent: array (nullable = true)
| |-- element: string (containsNull = true)
|-- Target: string (nullable = true)
|-- Gap: string (nullable = true)
|-- Note: array (nullable = true)
| |-- element: string (containsNull = true)
|-- Dbxref: array (nullable = true)
| |-- element: string (containsNull = true)
|-- Is_circular: boolean (nullable = true)
|-- align_id: string (nullable = true)
|-- allele: string (nullable = true)
.
.
.
|-- transl_table: string (nullable = true)
|-- weighted_identity: string (nullable = true)

This schema has 100 fields (not all shown here). The first eight fields (seqId, source, type, start, end, score,
strand, and phase), here referred to as the “base” fields, correspond to the first eight columns of the GFF3 format
cast in the proper data types. The rest of the fields in the inferred schema are the result of parsing the attributes

74 Chapter 9. Blog Posts

https://github.com/The-Sequence-Ontology/Specifications/blob/master/gff3.md

glow Documentation, Release 2.1.0-SNAPSHOT

column of the GFF3 file. Fields corresponding to any “official” tag (those referred to as “tags with pre-defined meaning”
in the GFF3 format description), if present in the GFF3 file, come first in appropriate data types. The official fields are
followed by the “unofficial” fields (fields corresponding to any other tag) in alphabetical order. In the example above,
ID, Name, Parent, Target, Gap, Note, Dbxref, and Is_circular are the official fields, and the rest are the unofficial
fields. The gff data source discards the comments, directives, and FASTA lines that may be in the GFF3 file.

As it is not uncommon for the official tags to be spelled differently in terms of letter case and underscore usage across
different GFF3 files, or even within a single GFF3 file, the gff data source is designed to be insensitive to letter case
and underscore in extracting official tags from the attributes field. For example, the official tag Dbxref will be
correctly extracted as an official field even if it appears as dbxref or dbx_ref in the GFF3 file. Please see Glow
documentation for more details.

Like other Spark SQL data sources, Glow’s gff data source is also able to accept a user-specified schema through the
.schema command. The data source behavior in this case is also designed to be quite flexible. More specifically, the
fields (and their types) in the user-specified schema are treated as the list of fields, whether base, official, or unofficial,
to be extracted from the GFF3 file (and cast to the specified types). Please see the Glow documentation for more details
on how user-specified schemas can be used.

9.2.3 Example: Gene Transcripts and Transcript Exons

With the annotation tags extracted as individual DataFrame columns using Glow’s gff data source, query and data
preparation over genetic annotations becomes as easy as writing common Spark SQL commands in the user’s API of
choice. As an example, here we demonstrate how simple queries can be used to extract data regarding hierarchical
grouping of genomic features from the annotations_df created above.

One of the main advantages of the GFF3 format compared to older versions of GFF is the improved presentation of
feature hierarchies (see GFF3 format description for more details). Two examples of such hierarchies are:

• Transcripts of a gene (here, gene is the “parent” feature and its transcripts are the “children” features).

• Exons of a transcript (here, the transcript is the parent and its exons are the children).

In the GFF3 format, the parents of the feature in each row are identified by the value of the parent tag in the
attributes column, which includes the ID(s) of the parent(s) of the row. Glow’s gff data source extracts this infor-
mation as an array of parent ID(s) in a column of the resulting DataFrame called parent.

Assume we would like to create a DataFrame, called gene_transcript_df, which, for each gene on chromosome
22, provides some basic information about the gene and all its transcripts. As each row in the annotations_df of our
example has at most a single parent, the parent_child_df DataFrame created by the following query will help us in
achieving our goal. This query joins annotations_df with a subset of its own columns on the parent column as the
key. Fig. 9.7 shows a small section of parent_child_df.

from pyspark.sql.functions import *

parent_child_df = annotations_df \
.join(
annotations_df.select('id', 'type', 'name', 'start', 'end').alias('parent_df'),
col('annotations_df.parent')[0] == col('parent_df.id') # each row in annotation_df has␣

→˓at most one parent
) \
.orderBy('annotations_df.start', 'annotations_df.end') \
.select(
'annotations_df.seqid',
'annotations_df.type',
'annotations_df.start',
'annotations_df.end',

(continues on next page)

9.2. Glow 0.4 Enables Integration of Genomic Variant and Annotation Data 75

https://github.com/The-Sequence-Ontology/Specifications/blob/master/gff3.md
https://glow.readthedocs.io/en/latest/etl/gff.html
https://glow.readthedocs.io/en/latest/etl/gff.html
https://glow.readthedocs.io/en/latest/etl/gff.html
https://github.com/The-Sequence-Ontology/Specifications/blob/master/gff3.md
https://github.com/The-Sequence-Ontology/Specifications/blob/master/gff3.md

glow Documentation, Release 2.1.0-SNAPSHOT

(continued from previous page)

'annotations_df.id',
'annotations_df.name',
col('annotations_df.parent')[0].alias('parent_id'),
col('parent_df.Name').alias('parent_name'),
col('parent_df.type').alias('parent_type'),
col('parent_df.start').alias('parent_start'),
col('parent_df.end').alias('parent_end')

) \
.alias('parent_child_df')

Fig. 9.7: A small section of the parent_child_df DataFrame

Having the parent_child_df DataFrame, we can now write the following simple function, called
parent_child_summary, which, given this DataFrame, the parent type, and the child type, generates a DataFrame
containing basic information on each parent of the given type and all its children of the given type.

from pyspark.sql.dataframe import *

def parent_child_summary(parent_child_df: DataFrame, parent_type: str, child_type: str) -
→˓> DataFrame:
return parent_child_df \
.select(
'seqid',
col('parent_id').alias(f'{parent_type}_id'),
col('parent_name').alias(f'{parent_type}_name'),
col('parent_start').alias(f'{parent_type}_start'),
col('parent_end').alias(f'{parent_type}_end'),
col('id').alias(f'{child_type}_id'),
col('start').alias(f'{child_type}_start'),
col('end').alias(f'{child_type}_end'),

) \
.where(f"type == '{child_type}' and parent_type == '{parent_type}'") \
.groupBy(
'seqid',
f'{parent_type}_id',
f'{parent_type}_name',
f'{parent_type}_start',
f'{parent_type}_end'

) \
.agg(

(continues on next page)

76 Chapter 9. Blog Posts

glow Documentation, Release 2.1.0-SNAPSHOT

(continued from previous page)

collect_list(
struct(
f'{child_type}_id',
f'{child_type}_start',
f'{child_type}_end'

)
).alias(f'{child_type}s')

) \
.orderBy(
f'{parent_type}_start',
f'{parent_type}_end'

) \
.alias(f'{parent_type}_{child_type}_df')

Now we can generate our intended gene_transcript_df DataFrame, shown in Fig. 9.8, with a single call to this
function:

gene_transcript_df = parent_child_summary(parent_child_df, 'gene', 'transcript')

Fig. 9.8: A small section of the gene_transcript_df DataFrame

In each row of this DataFrame, the transcripts column contains the ID, start and end of all transcripts of the gene
in that row as an array of structs.

The same function can now be used to generate any parent-child feature summary. For example, we can generate
the information of all exons of each transcript on chromosome 22 with another call to the parent_child_summary
function as shown below. Fig. 9.9 shows the generated transcript_exon_df DataFrame.

transcript_exon_df = parent_child_summary(parent_child_df, 'transcript', 'exon')

Fig. 9.9: A small section of the transcript_exon_df DataFrame

9.2. Glow 0.4 Enables Integration of Genomic Variant and Annotation Data 77

glow Documentation, Release 2.1.0-SNAPSHOT

9.2.4 Example Continued: Integration with Variant Data

Glow has data sources to ingest variant data from common flat file formats such as VCF, BGEN, and PLINK. Com-
bining the power of Glow’s variant data sources with the new gff data source, the users can now seamlessly annotate
their variant DataFrames by joining them with annotation DataFrames in any desired fashion.

As an example, let us load the chromosome 22 variants of the 1000 Genome Project (on genome assembly GRCh38)
from a VCF file (obtained from the project’s ftp site). Fig. 9.10 shows the resulting variants_df.

vcf_path = "/databricks-datasets/genomics/1kg-vcfs/ALL.chr22.shapeit2_integrated_
→˓snvindels_v2a_27022019.GRCh38.phased.vcf.gz"

variants_df = spark.read \
.format("vcf") \
.load(vcf_path) \
.alias('variants_df')

Fig. 9.10: A small section of the variants_df DataFrame

Now using the following double-join query, we can create a DataFrame which, for each variant on a gene on chromo-
some 22, provides the information of the variant as well as the exon, transcript, and gene on which the variant resides
(Fig. 9.11). Note that the first two exploded DataFrames can also be constructed directly from parent_child_df.
Here, since we had already defined gene_transcrip_df and transcript_exon_df, we generated these exploded
DataFrames simply by applying the explode function followed by Glow’s expand_struct function on them.

from glow.functions import *

gene_transcript_exploded_df = gene_transcript_df \
.withColumn('transcripts', explode('transcripts')) \
.withColumn('transcripts', expand_struct('transcripts')) \
.alias('gene_transcript_exploded_df')

transcript_exon_exploded_df = transcript_exon_df \
.withColumn('exons', explode('exons')) \
.withColumn('exons', expand_struct('exons')) \
.alias('transcript_exon_exploded_df')

variant_exon_transcript_gene_df = variants_df \
.join(
transcript_exon_exploded_df,
(variants_df.start < transcript_exon_exploded_df.exon_end) &
(transcript_exon_exploded_df.exon_start < variants_df.end)

) \
.join(
gene_transcript_exploded_df,

(continues on next page)

78 Chapter 9. Blog Posts

http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/data_collections/1000_genomes_project/release/20190312_biallelic_SNV_and_INDEL/

glow Documentation, Release 2.1.0-SNAPSHOT

(continued from previous page)

transcript_exon_exploded_df.transcript_id == gene_transcript_exploded_df.transcript_id
) \
.select(
col('variants_df.contigName').alias('variant_contig'),
col('variants_df.start').alias('variant_start'),
col('variants_df.end').alias('variant_end'),
col('variants_df.referenceAllele'),
col('variants_df.alternateAlleles'),
'transcript_exon_exploded_df.exon_id',
'transcript_exon_exploded_df.exon_start',
'transcript_exon_exploded_df.exon_end',
'transcript_exon_exploded_df.transcript_id',
'transcript_exon_exploded_df.transcript_name',
'transcript_exon_exploded_df.transcript_start',
'transcript_exon_exploded_df.transcript_end',
'gene_transcript_exploded_df.gene_id',
'gene_transcript_exploded_df.gene_name',
'gene_transcript_exploded_df.gene_start',
'gene_transcript_exploded_df.gene_end'

) \
.orderBy(
'variant_contig',
'variant_start',
'variant_end'

)

Fig. 9.11: A small section of the variant_exon_transcript_gene_df DataFrame

9.2. Glow 0.4 Enables Integration of Genomic Variant and Annotation Data 79

glow Documentation, Release 2.1.0-SNAPSHOT

9.2.5 Other Features and Improvements

In addition to the new gff reader, Glow 0.4 introduced other features and improvements. A new function, called
mean_substitute, was introduced, which can be used to substitute the missing values of a numeric Spark array
with the mean of the non-missing values. The normalize_variants transformer now accepts reference genomes in
bgzipped fasta format in addition to the uncompressed fasta. The VCF reader was updated to be able to handle reading
file globs that include tabix index files. In addition, this reader no longer has the splitToBiallelic option. The
split_multiallelics transformer introduced in Glow 0.3 can be used instead. Also, the pipe transformer was
improved so that it does not pipe empty partitions. As a result, users do not need to repartition or coalesce when
piping VCF files. For a complete list of new features and improvements in Glow 0.4, please refer to Glow 0.4 Release
Notes.

9.2.6 Try It!

Try Glow 0.4 and its new features here.

9.3 Glow 0.3.0 Introduces Several New Large-Scale Genomic Analysis
Features

Author: Kiavash Kianfar
March 2, 2020

Glow 0.3.0 was released on February 21, 2020, improving Glow’s power and ease of use in performing large-scale
genomic analysis. In this blog, we highlight features and improvements introduced in this release.

9.3.1 Python and Scala APIs for Glow SQL functions

In this release, Python and Scala APIs were introduced for all Glow SQL functions, similar to what is available for Spark
SQL functions. In addition to improved simplicity, this provides enhanced compile-time safety. The SQL functions
and their Python and Scala clients are generated from the same source so any new functionality in the future will
always appear in all three languages. Please refer to PySpark Functions for more information on Python APIs for these
functions. As an example, the usage of such Python and Scala APIs for the function normalize_variant is presented
at the end of next section.

9.3.2 Improved variant normalization

The variant normalizer received a major improvement in this release. It still behaves like bcftools norm and vt normal-
ize, but is about 2.5x faster and has a more flexible API. Moreover, the new normalizer is implemented as a function
in addition to a transformer.

normalize_variants transformer: The improved transformer preserves the columns of the input DataFrame,
adds the normalization status to the DataFrame, and has the option of adding the normalization results (including
the normalized coordinates and alleles) to the DataFrame as a new column. As an example, assume we read the
original_variants_df DataFrame shown in Fig. 9.12 by issuing the following command:

original_variants_df = spark.read \
.format("vcf") \

(continues on next page)

80 Chapter 9. Blog Posts

https://github.com/projectglow/glow/releases
https://github.com/projectglow/glow/releases
https://projectglow.io/
https://github.com/kianfar77
https://www.htslib.org/doc/bcftools.html#norm
https://genome.sph.umich.edu/wiki/Vt#Normalization
https://genome.sph.umich.edu/wiki/Vt#Normalization

glow Documentation, Release 2.1.0-SNAPSHOT

(continued from previous page)

.option("includeSampleIds", False) \

.load("/databricks-datasets/genomics/call-sets")

Fig. 9.12: The variant DataFrame original_variants_df

The improved normalizer transformer can be applied on this DataFrame using the following command similar to the
previous version of the normalizer:

import glow
normalized_variants_df = glow.transform("normalize_variants", \
original_variants_df, \
reference_genome_path="/mnt/dbnucleus/dbgenomics/grch38/data/GRCh38_full_analysis_set_

→˓plus_decoy_hla.fa" \
)

Fig. 9.13: The normalized DataFrame normalized_variants_df

The output DataFrame of this improved transformer looks like Fig. 9.13. The start, end, referenceAllele, and
alternateAlleles fields are updated with the normalized values and a normalizationStatus column is added to
the DataFrame. This column contains a changed subfield indicating whether normalization changed the variant and
an errorMessage subfield containing the error message in case of an error.

The newly introduced replace_columns option can be used to add the normalization results as a new column to the

9.3. Glow 0.3.0 Introduces Several New Large-Scale Genomic Analysis Features 81

glow Documentation, Release 2.1.0-SNAPSHOT

DataFrame instead of replacing the original start, end, referenceAllele, and alternateAlleles fields. This
can be done as follows:

import glow
normalized_variants_df = glow.transform("normalize_variants",\
original_variants_df, \
replace_columns="False", \
reference_genome_path="/mnt/dbnucleus/dbgenomics/grch38/data/GRCh38_full_analysis_set_

→˓plus_decoy_hla.fa" \
)

Fig. 9.14: The normalized DataFrame normalized_noreplace_variants_df with normalization results added as
a new column

The resulting DataFrame will be as shown in Fig. 9.14, where a normalizationResults column containing the
normalized start, end, referenceAllele, alternateAlleles, and normalizationStatus subfields is added to
the DataFrame.

We also note that since the multiallelic variant splitter is implemented as a separate transformer in this release (see
below), the mode option of the normalize_variants transformer is deprecated. Refer to Variant Normalization for
more details on the normalize_variants transformer.

normalize_variant function: As mentioned above, in this release, variant normalization can also be performed
using the newly introduced normalize_variant SQL expression function as shown below:

from pyspark.sql.functions import expr
function_normalized_variants_df = original_variants_df.withColumn(\
"normalizationResult", \
expr("normalize_variant(contigName, start, end, referenceAllele, alternateAlleles, '/

→˓mnt/dbnucleus/dbgenomics/grch38/data/GRCh38_full_analysis_set_plus_decoy_hla.fa')") \
)

As discussed in the previous section, this SQL expression function, like any other in Glow, now has Python and Scala
APIs as well. Therefore, the same can be done in Python as follows:

from glow.functions import normalize_variant
function_normalized_variants_df = original_variants_df.withColumn(\
"normalizationResult", \
normalize_variant(\
"contigName", \

(continues on next page)

82 Chapter 9. Blog Posts

glow Documentation, Release 2.1.0-SNAPSHOT

(continued from previous page)

"start", \
"end", \
"referenceAllele", \
"alternateAlleles", \
"/mnt/dbnucleus/dbgenomics/grch38/data/GRCh38_full_analysis_set_plus_decoy_hla.fa" \

) \
)

and in Scala as well, assuming original_variant_df is defined in Scala:

import io.projectglow.functions.normalize_variant
import org.apache.spark.sql.functions.col
val function_normalized_variants_df = original_variants_df.withColumn(
"normalizationResult",
normalize_variant(
col("contigName"),
col("start"),
col("end"),
col("referenceAllele"),
col("alternateAlleles"),
"/mnt/dbnucleus/dbgenomics/grch38/data/GRCh38_full_analysis_set_plus_decoy_hla.fa"

)
)

The result of any of the above commands will be the same as Fig. 9.14.

9.3.3 A new transformer to split multiallelic variants

This release also introduced a new DataFrame transformer, called split_multiallelics, to split multiallelic vari-
ants into biallelic ones with a behavior similar to vt decompose with -s option. This behavior is significantly more
powerful than the behavior of the previous version’s splitter which behaved like GATK’s LeftAlignAndTrimVariants
with --split-multi-allelics. In particular, the array-type INFO and genotype fields with elements corresponding
to reference and alternate alleles are split “smart”ly (see -s option of vt decompose) into biallelic rows. So are the
array-type genotype fields with elements sorted in colex order of genotype calles, e.g., the GL, PL, and GP fields in the
VCF format. Moreover, an OLD_MULTIALLELIC INFO field is added to the DataFrame to store the original multiallelic
form of the split variants.

The following is an example of using the split_multiallelic transformer on the original_variants_df. The
resulting DataFrame is as in Fig. 9.15.

import glow
split_variants_df = glow.transform("split_multiallelics", original_variants_df)

Please note that the new splitter is implemented as a separate transformer from the normalize_variants transformer.
Previously, splitting could only be done as one of the operation modes of the normalize_variants transformer using
the now-deprecated mode option.

Please refer to the documentation of the split_multiallelics transformer for complete details on the bahavior of this new
transformer.

9.3. Glow 0.3.0 Introduces Several New Large-Scale Genomic Analysis Features 83

https://genome.sph.umich.edu/wiki/Vt#Decompose
https://gatk.broadinstitute.org/hc/en-us/articles/360037225872-LeftAlignAndTrimVariants
https://genome.sph.umich.edu/wiki/Vt#Decompose

glow Documentation, Release 2.1.0-SNAPSHOT

Fig. 9.15: The split DataFrame split_variants_df

9.3.4 Parsing of Annotation Fields

The VCF reader and pipe transformer now parse variant annotations from tools such as SnpEff and VEP. This flattens
the ANN and CSQ INFO fields, simplifying and accelerating queries on annotations. See the following query and its
result in Fig. 9.16 for an example.

from pyspark.sql.functions import expr
variants_df = spark.read\
.format("vcf")\
.load("dbfs:/databricks-datasets/genomics/vcfs/loftee.vcf")

annotated_variants_df = original_variants_df.withColumn(\
"Exploded_INFO_CSQ", \
expr("explode(INFO_CSQ)") \

) \
.selectExpr("contigName", \

"start", \
"end", \
"referenceAllele", \
"alternateAlleles", \
"expand_struct(Exploded_INFO_CSQ)", \
"genotypes" \

)

Fig. 9.16: The annotated DataFrame annotated_variants_df with expanded subfields of the exploded INFO_CSQ

84 Chapter 9. Blog Posts

http://snpeff.sourceforge.net/index.html
https://www.ensembl.org/info/docs/tools/vep/index.html

glow Documentation, Release 2.1.0-SNAPSHOT

9.3.5 Other Improvements

Glow 0.3.0 also includes optimized implementations of the linear and logistic regression functions, resulting in ~50%
performance improvements. See the documentation at Linear regression and Logistic regression.

Furthermore, the new release supports Scala 2.12 in addition to Scala 2.11. The maven artifacts for both Scala versions
are available on Maven Central.

9.3.6 Try It!

Try Glow 0.3.0 and its new features here.

9.4 Streamlining Variant Normalization on Large Genomic Datasets

Author: Kiavash Kianfar
November 20, 2019

Many research and drug development projects in the genomics world involve large genomic variant data sets, the vol-
ume of which has been growing exponentially over the past decade. However, the tools to extract, transform, load
(ETL) and analyze these data sets have not kept pace with this growth. Single-node command line tools or scripts are
very inefficient in handling terabytes of genomics data in these projects. In October of this year, Databricks and the
Regeneron Genetics Center partnered to introduce the open-source project Glow, which provides powerful genomics
tools based on Apache Spark in order to address this issue.

In large cross-team research or drug discovery projects, computational biologists and bioinformaticians usually need
to merge very large variant call sets in order to perform downstream analyses. In a prior post, we showcased the
power and simplicity of Glow in ETL and merging of variant call sets from different sources using Glow’s VCF and
BGEN Data Sources at unprecedented scales. Differently sourced variant call sets impose another major challenge. It
is not uncommon for these sets to be generated by different variant calling tools and methods. Consequently, the same
genomic variant may be represented differently (in terms of genomic position and alleles) across different call sets.
These discrepancies in variant representation must be resolved before any further analysis on the data. This is critical
for the following reasons:

1. To avoid incorrect bias in the results of downstream analysis on the merged set of variants or waste of analysis
effort on seemingly new variants due to lack of normalization, which are in fact redundant (see Tan et al. for
examples of this redundancy in 1000 Genome Project variant calls and dbSNP)

2. To ensure that the merged data set and its post-analysis derivations are compatible and comparable with other
public and private variant databases.

This is achieved by what is referred to as variant normalization, a process that ensures the same variant is represented
identically across different data sets. Performing variant normalization on terabytes of variant data in large projects
using popular single-node tools can become quite a challenge as the acceptable input and output of these tools are
the flat file formats that are commonly used to store variant calls (such as VCF and BGEN). To address this issue, we
introduced the variant normalization transformation into Glow, which directly acts on a Spark Dataframe of variants to
generate a DataFrame of normalized variants, harnessing the power of Spark to normalize variants from hundreds of
thousands of samples in a fast and scalable manner with just a single line of Python or Scala code. Before addressing
our normalizer, let us have a slightly more technical look at what variant normalization actually does.

9.4. Streamlining Variant Normalization on Large Genomic Datasets 85

https://search.maven.org/search?q=g:io.projectglow
https://projectglow.io/
https://github.com/kianfar77
https://databricks.com/
https://www.regeneron.com/genetics-center
https://projectglow.io/
https://databricks.com/blog/2019/06/26/scaling-genomic-workflows-with-spark-sql-bgen-and-vcf-readers.html

glow Documentation, Release 2.1.0-SNAPSHOT

9.4.1 What does variant normalization do?

Variant normalization ensures that the representation of a variant is both “parsimonious” and “left-aligned.” A variant
is parsimonious if it is represented in as few nucleotides as possible without reducing the length of any allele to zero.
An example is given in Fig. 9.17.

Fig. 9.17: Variant parsimony

A variant is left-aligned if its position cannot be shifted to the left while keeping the length of all its alleles the same.
An example is given in Fig. 9.18.

Fig. 9.18: Left-aligned variant

Tan et al. have proved that normalization results in uniqueness. In other words, two variants have different normalized
representations if and only if they are actually different variants.

9.4.2 Variant normalization in Glow

We have introduced the normalize_variants transformer into Glow (Fig. 9.19). After ingesting variant calls into
a Spark DataFrame using the VCF, BGEN or Delta readers, a user can call a single line of Python or Scala code
to normalize all variants. This generates another DataFrame in which all variants are presented in their normalized
form. The normalized DataFrame can then be used for downstream analyses like a GWAS using our built-in regression
functions or an efficiently-parallelized GWAS tool.

The normalize_variants transformer brings unprecedented scalability and simplicity to this important upstream
process, hence is yet another reason why Glow and Databricks UAP for Genomics are ideal platforms for biobank-

86 Chapter 9. Blog Posts

https://databricks.com/blog/2019/09/20/engineering-population-scale-genome-wide-association-studies-with-apache-spark-delta-lake-and-mlflow.html
https://databricks.com/blog/2019/09/20/engineering-population-scale-genome-wide-association-studies-with-apache-spark-delta-lake-and-mlflow.html
https://databricks.com/blog/2019/10/02/parallelizing-saige-across-hundreds-of-cores.html

glow Documentation, Release 2.1.0-SNAPSHOT

Fig. 9.19: Scalable Variant Normalization Using Glow

scale genomic analyses, e.g., association studies between genetic variations and diseases across cohorts of hundreds of
thousands of individuals.

9.4.3 The underlying normalization algorithm and its accuracy

There are several single-node tools for variant normalization that use different normalization algorithms. Widely used
tools for variant normalization include vt normalize, bcftools norm, and the GATK’s LeftAlignAndTrimVariants.

Based on our own investigation and also as indicated by Bayat et al. and Tan et al., the GATK’s LeftAlignAndTrim-
Variants algorithm frequently fails to completely left-align some variants. For example, we noticed that on the
test_left_align_hg38.vcf test file from GATK itself, applying LeftAlignAndTrimVariants results in an incorrect nor-
malization of 3 of the 16 variants in the file, including the variants at positions chr20:63669973, chr20:64012187,
and chr21:13255301. These variants are normalized correctly using vt normalize and bcftools norm.

Consequently, in our normalize_variants transformer, we used an improved version of the bcftools norm or vt
normalize algorithms, which are similar in fundamentals. For a given variant, we start by right-trimming all the
alleles of the variant as long as their rightmost nucleotides are the same. If the length of any allele reaches zero, we
left-append it with a fixed block of nucleotides from the reference genome (the nucleotides are added in blocks as
opposed to one-by-one to limit the number of referrals to the reference genome). When right-trimming is terminated,
a potential left-trimming is performed to eliminate the leftmost nucleotides common to all alleles (possibly generated
by prior left-appendings). The start, end, and alleles of the variants are updated appropriately during this process.

We benchmarked the accuracy of our normalization algorithm against vt normalize and bcftools norm on multi-
ple test files and validated that our results match the results of these tools.

9.4. Streamlining Variant Normalization on Large Genomic Datasets 87

https://genome.sph.umich.edu/wiki/Vt
https://www.htslib.org/doc/bcftools.html#norm
https://gatk.broadinstitute.org/hc/en-us/articles/360037225872-LeftAlignAndTrimVariants
https://github.com/broadinstitute/gatk/tree/master/src/test/resources/org/broadinstitute/hellbender/tools/walkers/variantutils/LeftAlignAndTrimVariants

glow Documentation, Release 2.1.0-SNAPSHOT

9.4.4 Optional splitting

Our normalize_variants transformer can optionally split multiallelic variants to biallelics. This is controlled by the
mode option that can be supplied to this transformer. The possible values for the mode option are as follows: normalize
(default), which performs normalization only, split_and_normalize, which splits multiallelic variants to biallelic
ones before performing normalization, and split, which only splits multiallelics without doing any normalization.

The splitting logic of our transformer is the same as the splitting logic followed by GATK’s LeftAlignAndTrimVariants
tool using --splitMultiallelics option. More precisely, in case of splitting multiallelic variants loaded from VCF
files, this transformer recalculates the GT blocks for the resulting biallelic variants if possible, and drops all INFO
fields, except for AC, AN, and AF. These three fields are imputed based on the newly calculated GT blocks, if any exists,
otherwise, these fields are dropped as well.

9.4.5 Using the transformer

Here, we briefly demonstrate how using Glow very large variant call sets can be normalized and/or split. First, VCF
and/or BGEN files can be read into a Spark DataFrame as demonstrated in a prior post. This is shown in Python for
the set of VCF files contained in a folder named /databricks-datasets/genomics/call-sets:

original_variants_df = spark.read\
.format("vcf")\
.option("includeSampleIds", False)\
.load("/databricks-datasets/genomics/call-sets")

An example of the DataFrame original_variants_df is shown in Fig. 9.20.

Fig. 9.20: The variant DataFrame original_variants_df

The variants can then be normalized using the normalize_variants transformer as follows:

import glow

ref_genome_path = '/mnt/dbnucleus/dbgenomics/grch38/data/GRCh38.fa'

normalized_variants_df = glow.transform(\
"normalize_variants",\
original_variants_df,\

(continues on next page)

88 Chapter 9. Blog Posts

https://gatk.broadinstitute.org/hc/en-us/articles/360037225872-LeftAlignAndTrimVariants
https://databricks.com/blog/2019/06/26/scaling-genomic-workflows-with-spark-sql-bgen-and-vcf-readers.html

glow Documentation, Release 2.1.0-SNAPSHOT

(continued from previous page)

reference_genome_path=ref_genome_path\
)

Note that normalization requires the reference genome .fasta or .fa file, which is provided using the
reference_genome_path option. The .dict and .fai files must accompany the reference genome file in the same
folder (read more about these file formats here).

Our example Dataframe after normalization can be seen in Fig. 9.21.

Fig. 9.21: The normalized_variants_df DataFrame obtained after applying normalize_variants transformer
on original_variants_df. Notice that several variants are normalized and their start, end, and alleles have changed
accordingly.

By default, the transformer normalizes each variant without splitting the multiallelic variants before normalization as
seen in Fig. 9.21. By setting the mode option to split_and_normalize, nothing changes for biallelic variants, but
the multiallelic variants are first split to the appropriate number of biallelics and the resulting biallelics are normalized.
This can be done as follows:

split_and_normalized_variants_df = glow.transform(\
"normalize_variants",\
original_variants_df,\
reference_genome_path=ref_genome_path,\
mode=“split_and_normalize”

)

The resulting DataFrame looks like Fig. 9.22.

As mentioned before, the transformer can also be used only for splitting of multiallelics without doing any normalization
by setting the mode option to split.

9.4. Streamlining Variant Normalization on Large Genomic Datasets 89

https://gatk.broadinstitute.org/hc/en-us/articles/360035531652?id=11013

glow Documentation, Release 2.1.0-SNAPSHOT

Fig. 9.22: The split_and_normalized_variants_df DataFrame after applying normalize_variants transformer
with mode=split_and_normalize on original_variants_df. Notice that for example the triallelic variant
chr20,start=19883344,end=19883345,REF=T,ALT=[TT,C] of original_variants_df has been split into
two biallelic variants and then normalized resulting in two normalized biallelic variants chr20,start=19883336,
end=19883337,REF=C,ALT=CT and chr20,start=19883344,end=19883345,REF=T,ALT=C.

9.4.6 Summary

Using Glow normalize_variants transformer, computational biologists and bioinformaticians can normalize very
large variant datasets of hundreds of thousands of samples in a fast and scalable manner. Differently sourced call sets
can be ingested and merged using VCF and/or BGEN readers, normalization can be performed using this transformer
in a just a single line of code. The transformer can optionally perform splitting of multiallelic variants to biallelics as
well.

9.4.7 Try it!

Our normalize_variants transformer makes it easy to normalize (and split) large variant datasets with a very small
amount of code . Learn more about other feature of Glow here.

9.4.8 References

Arash Bayat, Bruno Gaëta, Aleksandar Ignjatovic, Sri Parameswaran, Improved VCF normalization for accurate VCF
comparison, Bioinformatics, Volume 33, Issue 7, 2017, Pages 964–970

Adrian Tan, Gonçalo R. Abecasis, Hyun Min Kang, Unified representation of genetic variants, Bioinformatics, Volume
31, Issue 13, 2015, Pages 2202–2204

90 Chapter 9. Blog Posts

https://glow.readthedocs.io/en/latest/etl/variant-normalization.html
https://glow.readthedocs.io/en/latest/index.html
https://academic.oup.com/bioinformatics/article/33/7/964/2623048
https://academic.oup.com/bioinformatics/article/33/7/964/2623048
https://academic.oup.com/bioinformatics/article/31/13/2202/196142

CHAPTER

TEN

ADDITIONAL RESOURCES

10.1 Databricks notebooks

Most of the code in the Databricks notebooks can be run on Spark and Glow alone, but some functions are only available
on Databricks.

10.1.1 New to Databricks? Try Glow on Databricks for Free!

The Databricks Community Edition is free of charge. Follow our instructions to set up a Databricks Community Edition
workspace and try the Glow documentation notebooks.

10.2 External blog posts

• Scaling Genomic Workflows with Spark SQL BGEN and VCF Readers

• Parallelizing SAIGE Across Hundreds of Cores

– Parallelize SAIGE using Glow and the Pipe Transformer

• Accurately Building Genomic Cohorts at Scale with Delta Lake and Spark SQL

– Joint genotyping with Glow and Databricks

• Introducing Glow: an open-source toolkit for large-scale genomic analysis

91

https://databricks.com/product/faq/community-edition
https://databricks.com/blog/2019/06/26/scaling-genomic-workflows-with-spark-sql-bgen-and-vcf-readers.html
https://databricks.com/blog/2019/10/02/parallelizing-saige-across-hundreds-of-cores.html
https://databricks.com/blog/2019/06/19/accurately-building-genomic-cohorts-at-scale-with-delta-lake-and-spark-sql.html
https://databricks.com/blog/2019/10/18/introducing-glow-an-open-source-toolkit-for-large-scale-genomic-analysis.html

glow Documentation, Release 2.1.0-SNAPSHOT

92 Chapter 10. Additional Resources

CHAPTER

ELEVEN

PYTHON API

Glow’s Python API is designed to work seamlessly with PySpark and other tools in the Spark ecosystem. The functions
here work with normal PySpark DataFrames and columns. You can access functions in any module from the top-level
glow import.

11.1 Glow Top-Level Functions

11.2 PySpark Functions

Glow includes a number of functions that operate on PySpark columns. These functions are interoperable with functions
provided by PySpark or other libraries.

11.3 GloWGR

11.3.1 WGR functions

11.3.2 GWAS functions

93

	Introduction to Glow
	Getting Started
	Running Locally
	Getting started on Databricks
	Notebooks embedded in the docs

	GWAS Tutorial
	1. Quality Control
	2. Glow Whole Genome Regression (GloWGR)
	3. Regression
	Quality control
	Quantitative glow whole genome regression
	Linear regression
	Binary glow whole genome regression
	Logistic regression

	Customizing Glow
	Customizing the Databricks environment
	Init scripts
	Databricks Container Services

	Maintaining private patches on top of Glow

	Variant Data Manipulation
	Data Simulation
	Simulate Covariates & Phenotypes
	Notebook

	Simulate Genotypes
	Notebook

	Read and Write VCF, Plink, and BGEN with Spark
	VCF
	BGEN
	PLINK
	Manually defining read schema
	Notebook

	Read Genome Annotations (GFF3) as a Spark DataFrame
	Schema
	1. Inferred schema
	2. User-specified schema
	Notebook

	Create a Genomics Delta Lake
	Explode pVCF variant dataframe and write to Delta Lake
	Create database for variants and annotations
	Query variant database

	Variant Quality Control
	Notebook

	Sample Quality Control
	Computing user-defined sample QC metrics
	Explode and aggregate
	Notebook

	Liftover
	Create a liftOver cluster
	Coordinate liftOver
	Variant liftOver
	Liftover notebook

	Variant Normalization
	normalize_variants Transformer
	Usage
	Options
	normalize_variant Function
	Variant normalization notebook

	Split Multiallelic Variants
	Options
	Usage
	Split Multiallelic Variants notebook

	Merging Variant Datasets
	Aggregating INFO fields
	Joint genotyping
	Notebook

	Utility Functions
	Struct transformations
	Spark ML transformations
	Variant data transformations

	Tertiary Analysis
	The Pipe Transformer for Parallelizing Command-Line Bioinformatics Tools
	Usage
	Integrating with bioinformatics tools
	Options
	Text input and output formatters
	VCF input formatter

	Cleanup
	Examples
	Pipe Transformer bedtools example notebook
	Pipe Transformer Variant Effect Predictor (VEP) example notebook

	Python Statistics Libraries
	pandas example notebook

	GloWGR: Whole Genome Regression
	Performance
	Overview
	Data preparation
	1. Genotype data
	Example

	2. Phenotype data
	3. Covariate data
	Example

	Stage 1. Genotype matrix blocking
	Parameters
	Return
	Example

	Stage 2. Dimensionality reduction
	1. Initialization
	Parameters
	Example

	2. Model fitting
	Return
	Example

	3. Model transformation
	Parameters
	Return
	Example

	Performing fit and transform in a single step
	Example

	Stage 3. Estimate phenotypic predictors
	1. Initialization
	2. Model fitting
	Parameters
	Return
	Example

	3. Model transformation
	Parameters
	Return
	Example

	Proceed to GWAS
	Troubleshooting
	Example notebook
	GloWGR notebook for quantitative phenotypes
	GloWGR notebook for binary phenotypes

	GloWGR: Genome-Wide Association Study (GWAS) Regression Tests
	Linear regression
	Example

	Logistic regression
	Example

	Offset
	Example notebooks and blog post
	GloWGR: GWAS for quantitative traits
	GloWGR: GWAS for binary traits

	Troubleshooting
	Contributing
	Raise Issues
	Contribute to the codebase
	1. Modify or add notebooks
	2. Improve the documentation
	3. Contribute new features / bug fixes

	Blog Posts
	Introducing GloWGR: An industrial-scale, ultra-fast and sensitive method for genetic association studies
	Achieving High Accuracy and Efficiency with Whole-Genome Regression
	Scaling Whole Genome Regression within Project Glow
	Join us and try whole genome regression in Glow!

	Glow 0.4 Enables Integration of Genomic Variant and Annotation Data
	Ingesting GFF3 Annotation Data
	Schema
	Example: Gene Transcripts and Transcript Exons
	Example Continued: Integration with Variant Data
	Other Features and Improvements
	Try It!

	Glow 0.3.0 Introduces Several New Large-Scale Genomic Analysis Features
	Python and Scala APIs for Glow SQL functions
	Improved variant normalization
	A new transformer to split multiallelic variants
	Parsing of Annotation Fields
	Other Improvements
	Try It!

	Streamlining Variant Normalization on Large Genomic Datasets
	What does variant normalization do?
	Variant normalization in Glow
	The underlying normalization algorithm and its accuracy
	Optional splitting
	Using the transformer
	Summary
	Try it!
	References

	Additional Resources
	Databricks notebooks
	New to Databricks? Try Glow on Databricks for Free!

	External blog posts

	Python API
	Glow Top-Level Functions
	PySpark Functions
	GloWGR
	WGR functions
	GWAS functions

