

Glow

Glow [https://projectglow.io/] is an open-source [https://github.com/projectglow/glow] toolkit for working with
genomic data at biobank-scale and beyond. The toolkit is natively built on Apache Spark, the leading unified engine for
big data processing and machine learning, enabling genomics workflows to scale to population levels.

	Introduction to Glow

	Getting Started
	Running Locally

	Notebooks embedded in the docs

	Getting started on Databricks

	Getting started on other cloud services

	Variant Data Manipulation
	Data Simulation

	Read and Write VCF, Plink, and BGEN with Spark

	Read Genome Annotations (GFF3) as a Spark DataFrame

	Create a Genomics Delta Lake

	Variant Quality Control

	Sample Quality Control

	Liftover

	Variant Normalization

	Split Multiallelic Variants

	Merging Variant Datasets

	Hail Interoperation

	Utility Functions

	Tertiary Analysis
	Parallelizing Command-Line Bioinformatics Tools With the Pipe Transformer

	Using Python Statistics Libraries

	GloWGR: Whole Genome Regression

	GloWGR: Genome-Wide Association Study (GWAS) Regression Tests

	Troubleshooting

	Blog Posts
	[Jul. 2020] Introducing GloWGR: An industrial-scale, ultra-fast and sensitive method for genetic association studies

	[Jun. 2020] Glow 0.4 Enables Integration of Genomic Variant and Annotation Data

	[Mar. 2020] Glow 0.3.0 Introduces Several New Large-Scale Genomic Analysis Features

	[Nov. 2019] Streamlining Variant Normalization on Large Genomic Datasets

	Additional Resources
	Databricks notebooks

	External blog posts

	Python API
	Glow Top-Level Functions

	PySpark Functions

	GloWGR

	Hail Interoperation Functions

Introduction to Glow

Genomics data has been doubling every seven months globally. It has reached a scale where genomics has
become a big data problem. However, most tools for working with genomics data run on single nodes and
will not scale. Furthermore, it has become challenging for scientists to manage storage, analytics
and sharing of public data.

Glow solves these problems by bridging bioinformatics and the big data ecosystem. It enables bioinformaticians
and computational biologists to leverage best practices used by data engineers and data scientists across industry.

Glow is built on Apache Spark [https://spark.apache.org/docs/latest/api/python/index.html] and Delta Lake [https://delta.io/],
enabling distributed computation on and distributed storage of genotype data. The library is backwards compatible
with genomics file formats and bioinformatics tools developed in academia, enabling users to easily share data
with collaborators.

When combined with Delta Lake, Glow solves the “n+1” problem in genomics, allowing continuous integration
of and analytics on whole genomes without data freezes.

Glow is used to:

	Ingest genotype data into a data lake that acts as a single source of truth.

	Perform joint-genotyping of genotype data on top of delta-lake.

	Run quality control, statistical analysis, and association studies on population-scale datasets.

	Build reproducible, production-grade genomics data pipelines that will scale to tens of trillions of records.

[image: _images/glow_ref_arch_genomics.png]
Glow features:

	Genomic datasources: To read datasets in common file formats such as VCF, BGEN, and Plink into Spark DataFrames.

	Genomic functions: Common operations such as computing quality control statistics, running regression
tests, and performing simple transformations are provided as Spark functions that can be
called from Python, SQL, Scala, or R.

	Data preparation building blocks: Glow includes transformations such as variant normalization and
lift over to help produce analysis ready datasets.

	Integration with existing tools: With Spark, you can write user-defined functions (UDFs) in
Python, R, SQL, or Scala. Glow also makes it easy to run DataFrames through command line tools.

	Integration with other data types: Genomic data can generate additional insights when joined with data sets
such as electronic health records, real world evidence, and medical images. Since Glow returns native Spark
SQL DataFrames, its simple to join multiple data sets together.

	GloWGR, a distributed version of the regenie [https://rgcgithub.github.io/regenie/] method, rewritten
from the ground up in Python.

Getting Started

Running Locally

Glow requires Apache Spark 3.1.2.

PythonScala
If you don’t have a local Apache Spark installation, you can install it from PyPI:

pip install pyspark==3.1.2

or download a specific distribution [https://spark.apache.org/downloads.html].

Install the Python frontend from pip:

pip install glow.py

and then start the Spark shell [http://spark.apache.org/docs/latest/rdd-programming-guide.html#using-the-shell]
with the Glow maven package:

./bin/pyspark --packages io.projectglow:glow-spark3_2.12:1.1.0 --conf spark.hadoop.io.compression.codecs=io.projectglow.sql.util.BGZFCodec

To start a Jupyter notebook instead of a shell:

PYSPARK_DRIVER_PYTHON=jupyter PYSPARK_DRIVER_PYTHON_OPTS=notebook ./bin/pyspark --packages io.projectglow:glow-spark3_2.12:1.1.0 --conf spark.hadoop.io.compression.codecs=io.projectglow.sql.util.BGZFCodec

And now your notebook is glowing! To access the Glow functions, you need to register them with the
Spark session.

import glow
spark = glow.register(spark)
df = spark.read.format('vcf').load(path)

If you don’t have a local Apache Spark installation,
download a specific distribution [https://spark.apache.org/downloads.html].

Start the Spark shell [http://spark.apache.org/docs/latest/rdd-programming-guide.html#using-the-shell]
with the Glow maven package:

./bin/spark-shell --packages io.projectglow:glow-spark3_2.12:1.1.0 --conf spark.hadoop.io.compression.codecs=io.projectglow.sql.util.BGZFCodec

To access the Glow functions, you need to register them with the Spark session.

import io.projectglow.Glow
val sess = Glow.register(spark)
val df = sess.read.format("vcf").load(path)

Notebooks embedded in the docs

To demonstrate use cases of Glow, documentation pages are accompanied by embedded notebooks. Most code in these notebooks can be run on Spark and Glow alone, but functions such as display() or dbutils() are only available on Databricks. See Databricks notebooks for more info.

Also note that the path to datasets used as example in these notebooks is usually a folder in /databricks-datasets/genomics/ and should be replaced with the appropriate path based on your own folder structure.

Getting started on Databricks

The Databricks documentation shows how to get started with Glow on,

	Amazon Web Services (AWS - docs [https://docs.databricks.com/applications/genomics/index.html])

	Microsoft Azure (docs [https://docs.microsoft.com/en-us/azure/databricks/applications/genomics])

	Google Cloud Platform (GCP - docs [https://docs.gcp.databricks.com/applications/genomics/index.html])

Getting started on other cloud services

Please submit a pull request to add a guide for other cloud services.

Variant Data Manipulation

Glow offers functionalities to extract, transform and load (ETL) genomic variant data into Spark DataFrames,
enabling manipulation, filtering, quality control and transformation between file formats.

	Data Simulation
	Simulate Genotypes

	Simulate Covariates & Phenotypes

	Read and Write VCF, Plink, and BGEN with Spark
	VCF

	BGEN

	PLINK

	Read Genome Annotations (GFF3) as a Spark DataFrame
	Schema

	Create a Genomics Delta Lake
	VCF to Delta Lake table notebook

	Variant Quality Control
	Notebook

	Sample Quality Control
	Computing user-defined sample QC metrics

	Liftover
	Create a liftOver cluster

	Coordinate liftOver

	Variant liftOver

	Variant Normalization
	normalize_variants Transformer

	Usage

	Options

	normalize_variant Function

	Split Multiallelic Variants
	Usage

	Merging Variant Datasets
	Aggregating INFO fields

	Joint genotyping

	Hail Interoperation
	Create a Hail cluster

	Convert to a Glow DataFrame

	Schema mapping

	Utility Functions
	Struct transformations

	Spark ML transformations

	Variant data transformations

Data Simulation

The data simulation notebooks below generate genotypes, phenotypes and covariates at a user-defined scale.
This dataset can be used for integration and scale-testing.

Simulate Genotypes

This data simulation notebook downloads chromosomes 21 and 22 from the 1000 Genomes Project,
and returns a Delta Lake table with a simulated set of genotypes for n_samples and n_variants,
maintaining hardy-weinberg equilibrium and allele frequency for each variant.

Notebook

 How to run a notebook
 Get notebook link

 Read and Write VCF, Plink, and BGEN with Spark

Read and Write VCF, Plink, and BGEN with Spark

Glow makes it possible to read and write variant data at scale using Spark SQL.

Tip

This topic uses the terms “variant” or “variant data” to refer to
single nucleotide variants and short indels.

VCF

You can use Spark to read VCF files just like any other file format that Spark supports through
the DataFrame API using Python, R, Scala, or SQL.

df = spark.read.format("vcf").load(path)
assert_rows_equal(df.select("contigName", "start").head(), Row(contigName='17', start=504217))

The returned DataFrame has a schema that mirrors a single row of a VCF. Information that applies to an entire
variant (SNV or indel), such as the contig name, start and end positions, and INFO attributes,
is contained in columns of the DataFrame. The genotypes, which correspond to the GT FORMAT fields
in a VCF, are contained in an array with one entry per sample.
Each entry is a struct with fields that are described in the VCF header.

The path that you provide
can be the location of a single file, a directory that contains VCF files, or a Hadoop glob pattern
that identifies a group of files. Sample IDs are not included by default. See the
parameters table below for instructions on how to include them.

You can control the behavior of the VCF reader with a few parameters. All parameters are case insensitive.

	Parameter

	Type

	Default

	Description

	includeSampleIds

	boolean

	true

	If true, each genotype includes the name of the sample ID it belongs to. Sample names increase the size of each row, both in memory and on storage.

	flattenInfoFields

	boolean

	true

	If true, each info field in the input VCF will be converted into a column in the output DataFrame with each column typed as specified in the VCF header.
If false, all info fields will be contained in a single column with a string -> string map of info keys to values.

	validationStringency

	string

	silent

	Controls the behavior when parsing a malformed row. If silent, the row will be dropped silently. If lenient, the row will be dropped and a
warning will be logged. If strict, an exception will be thrown and reading will fail.

Note

Starting from Glow 0.4.0, the splitToBiallelic option for the VCF reader no longer exists. To split multiallelic variants to biallelics use the split_multiallelics transformer after loading the VCF.

Note

Glow includes a VCF reader that uses htsjdk [https://github.com/samtools/htsjdk] for initial parsing as well as a reader that parses VCF lines to Spark rows directly.

As of release 1.0.0, the direct reader is enabled by default. To use the htsjdk based reader, set the Spark config io.projectglow.vcf.fastReaderEnabled to false.

Important

The VCF reader uses the 0-start, half-open (zero-based) coordinate system. This means
that the start values in the DataFrame will be 1 lower than the values that appear in the VCF
file. For instance, if a variant has a POS value of 10 in a VCF file, the start column in the
DataFrame will contain the value 9. When writing to a VCF file, Glow converts positions back to a
1-based coordinate system as required by the VCF specification.

You can save a DataFrame as a VCF file, which you can then read with other tools. To write a DataFrame as a single VCF file specify the format "bigvcf":

df.write.format("bigvcf").save(path)

The file extension of the output path determines which, if any, compression codec should be used.
For instance, writing to a path such as /genomics/my_vcf.vcf.bgz will cause the output file to be
block gzipped.

If you’d rather save a sharded VCF where each partition saves to a separate file:

df.write.format("vcf").save(path)

To control the behavior of the sharded VCF writer, you can provide the following option:

	Parameter

	Type

	Default

	Description

	compression

	string

	n/a

	A compression codec to use for the output VCF file. The value can be the full name of a compression codec class
(for example GzipCodec) or a short alias (for example gzip). To use the block gzip codec, specify bgzf.

For both the single and sharded VCF writer, you can use the following options:

	Parameter

	Type

	Default

	Description

	vcfHeader

	string

	infer

	If infer, infers the header from the DataFrame schema. This value can be a complete header
starting with ## or a Hadoop filesystem path to a VCF file. The header from
this file is used as the VCF header for each partition.

	validationStringency

	string

	silent

	Controls the behavior when parsing a malformed row. If silent, the row will be dropped silently. If
lenient, the row will be dropped and a warning will be logged. If strict, an exception will be thrown and
writing will fail.

If the header is inferred from the DataFrame, the sample IDs are derived from the rows. If the sample IDs are missing,
they will be represented as sample_n, for which n reflects the index of the sample in a row. In this case,
there must be the same number of samples in each row.

	For the big VCF writer, the inferred sample IDs are the distinct set of all sample IDs from the DataFrame.

	For the sharded VCF writer, the sample IDs are inferred from the first row of each partition and must be the same
for each row. If the rows do not contain the same samples, provide a complete header of a filesystem path to a VCF
file.

BGEN

Glow provides the ability to read BGEN files, including those distributed by the UK Biobank project.

df = spark.read.format("bgen").load(path)

As with the VCF reader, the provided path can be a file, directory, or glob pattern. If .bgi
index files are located in the same directory as the data files, the reader uses the indexes to
more efficiently traverse the data files. Data files can be processed even if indexes do not exist.
The schema of the resulting DataFrame matches that of the VCF reader.

	Parameter

	Type

	Default

	Description

	useBgenIndex

	boolean

	true

	If true, use .bgi index files.

	sampleFilePath

	string

	n/a

	Path to a .sample Oxford sample information file containing sample IDs if not stored in the BGEN file.

	sampleIdColumn

	string

	ID_2

	Name of the column in the .sample file corresponding to the sample IDs.

	emitHardCalls

	boolean

	true

	If true, adds genotype calls for diploids based on the posterior probabilities.

	hardCallThreshold

	double

	0.9

	Sets the threshold for hard calls.

Important

The BGEN reader and writer assume that the first allele in the .bgen file is the reference
allele, and that all following alleles are alternate alleles.

You can use the DataFrameWriter API to save a single BGEN file, which you can then read with other tools.

df.write.format("bigbgen").save(path)

If the genotype arrays are missing ploidy and/or phasing information, the BGEN writer infers the values using the
provided values for ploidy, phasing, or posteriorProbabilities in the genotype arrays. You can provide the value for ploidy
using an integer value ploidy or it can be inferred using the length of an array calls, and you can provide the phasing information
using a boolean value phased.

To control the behavior of the BGEN writer, you can provide the following options:

	Parameter

	Type

	Default

	Description

	bitsPerProbability

	integer

	16

	Number of bits used to represent each probability value. Must be 8, 16, or 32.

	maximumInferredPloidy

	integer

	10

	The maximum ploidy that will be inferred for unphased data if ploidy is missing.

	defaultInferredPloidy

	integer

	2

	The inferred ploidy if phasing and ploidy are missing, or ploidy is missing and cannot be inferred from posteriorProbabilities.

	defaultInferredPhasing

	boolean

	false

	The inferred phasing if phasing is missing and cannot be inferred from posteriorProbabilities.

PLINK

Glow provides the ability to read binary PLINK binary PED (BED) files with accompanying BIM and FAM files. The provided path can be a
file or glob pattern.

df = spark.read.format("plink").load("{prefix}.bed".format(prefix=prefix))

The schema of the resulting DataFrame matches that of the VCF reader. The accompanying variant and sample information
files must be located at {prefix}.bim and {prefix}.fam.

	Parameter

	Type

	Default

	Description

	includeSampleIds

	boolean

	true

	If true, each genotype includes the name of the sample ID it belongs to.

	bimDelimiter

	string

	(tab)

	Whitespace delimiter in the {prefix}.bim file.

	famDelimiter

	string

	(space)

	Whitespace delimiter in the {prefix}.fam file.

	mergeFidIid

	boolean

	true

	If true, sets the sample ID to the family ID and individual ID merged with an underscore delimiter.
If false, sets the sample ID to the individual ID.

Important

The PLINK reader sets the first allele in the .bed file as the alternate allele, and the
second allele as the reference allele.

Notebook

 How to run a notebook
 Get notebook link

 Read Genome Annotations (GFF3) as a Spark DataFrame

Read Genome Annotations (GFF3) as a Spark DataFrame

GFF3 (Generic Feature Format Version 3) [https://github.com/The-Sequence-Ontology/Specifications/blob/master/gff3.md] is a 9-column tab-separated text file format commonly used to store genomic annotations.
Typically, the majority of annotation data in this format appears in the ninth column, called attributes, as a semi-colon-separated list of <tag>=<value> entries. If Spark’s standard csv data source is used to read GFF3 files, the whole list of attribute tag-value pairs will be read as a single string-typed column, making queries on these tags/values cumbersome.

To address this issue, Glow provides the gff data source. In addition to loading the first 8 columns of GFF3 as properly typed columns, the gff data source is able to parse all attribute tag-value pairs in the ninth column of GFF3 and create an appropriately typed column for each tag. In each row, the column corresponding to a tag will contain the tag’s value in that row (or null if the tag does not appear in the row).

Like any Spark data source, reading GFF3 files using the gff data source can be done in a single line of code:

df = spark.read.format("gff").load(path)

The gff data source supports all compression formats supported by Spark’s csv data source, including .gz and .bgz files. It also supports reading globs of files in one command.

Note

The gff data source ignores any comment and directive lines (lines starting with #) in the GFF3 file as well as any FASTA lines that may appear at the end of the file.

Schema

1. Inferred schema

If no user-specified schema is provided (as in the example above), the data source infers the schema as follows:

	The first 8 fields of the schema (“base” fields) correspond to the first 8 columns of the GFF3 file. Their names, types and order will be as shown below:

|-- seqId: string (nullable = true)
|-- source: string (nullable = true)
|-- type: string (nullable = true)
|-- start: long (nullable = true)
|-- end: long (nullable = true)
|-- score: double (nullable = true)
|-- strand: string (nullable = true)
|-- phase: integer (nullable = true)

Note

Although the start column in the GFF3 file is 1-based, the start field in the DataFrame will be 0-based to match the general practice in Glow.

	The next fields in the inferred schema will be created as the result of parsing the attributes column of the GFF3 file. Each tag will have its own field in the schema. Fields corresponding to any “official” tag (those referred to as tags with pre-defined meaning [https://github.com/The-Sequence-Ontology/Specifications/blob/master/gff3.md]) come first, followed by fields corresponding to any other tag (“unofficial” tags) in alphabetical order.

The complete list of official fields, their data types, and order are as shown below:

|-- ID: string (nullable = true)
|-- Name: string (nullable = true)
|-- Alias: string (nullable = true)
|-- Parent: array (nullable = true)
| |-- element: string (containsNull = true)
|-- Target: string (nullable = true)
|-- Gap: string (nullable = true)
|-- DerivesFrom: string (nullable = true)
|-- Note: array (nullable = true)
| |-- element: string (containsNull = true)
|-- Dbxref: array (nullable = true)
| |-- element: string (containsNull = true)
|-- OntologyTerm: array (nullable = true)
| |-- element: string (containsNull = true)
|-- Is_circular: boolean (nullable = true)

The unofficial fields will be of string type.

Note

	If any of official tags does not appear in any row of the GFF3 file, the corresponding field will be excluded from the inferred schema.

	The official/unofficial field name will be exactly as the corresponding tag appears in the GFF3 file (in terms of letter case).

	The parser is insensitive to the letter case of the tag, e.g., if the attributes column in the GFF3 file contains both note and Note tags, they will be both mapped to the same column in the DataFrame. The name of the column in this case will be either note or Note, chosen randomly.

2. User-specified schema

As with any Spark data source, the gff data source is also able to accept a user-specified schema through the .schema command. The user-specified schema can have any subset of the base, official, and unofficial fields. The data source is able to read only the specified base fields and parse out only the specified official and unofficial fields from the attributes column of the GFF3 file. Here is an example of how the user can specify some base, official, and unofficial fields while reading the GFF3 file:

mySchema = StructType(
 [StructField('seqId', StringType()), # Base field
 StructField('start', LongType()), # Base field
 StructField('end', LongType()), # Base field
 StructField('ID', StringType()), # Official field
 StructField('Dbxref', ArrayType(StringType())), # Official field
 StructField('mol_type', StringType())] # Unofficial field
)

df_user_specified = spark.read.format("gff").schema(mySchema).load(path)

Note

	The base field names in the user-specified schema must match the names in the list above in a case-sensitive manner.

	The official and unofficial fields will be matched with their corresponding tags in the GFF3 file in a case-and-underscore-insensitive manner. For example, if the GFF3 file contains the official tag db_xref, a user-specified schema field with the name dbxref, Db_Xref, or any other case-and-underscore-insensitive match will correspond to that tag.

	The user can also include the original attributes column of the GFF3 file as a string field by including StructField('attributes', StringType()) in the schema.

Notebook

 How to run a notebook
 Get notebook link

 Create a Genomics Delta Lake

Create a Genomics Delta Lake

Genomics data is usually stored in specialized flat-file formats such as VCF or BGEN.

The example below shows how to ingest a VCF into a genomics Delta Lake table [https://delta.io] using Glow in Python
(R, Scala, and SQL are also supported).

You can use Delta tables for second-latency queries, performant range-joins (similar to the single-node
bioinformatics tool bedtools intersect), aggregate analyses such as calculating summary statistics,
machine learning or deep learning.

Tip

We recommend ingesting VCF files into Delta tables once volumes reach >1000 samples, >10 billion genotypes or >1 terabyte.

VCF to Delta Lake table notebook

 How to run a notebook
 Get notebook link

 Variant Quality Control

Variant Quality Control

Glow includes a variety of tools for variant quality control.

Tip

This topic uses the terms “variant” or “variant data” to refer to
single nucleotide variants and short indels.

You can calculate quality control statistics on your variant data using Spark SQL functions, which can be expressed in Python, R, Scala, or SQL.

	Function

	Arguments

	Return

	hardy_weinberg

	The genotypes array. This function assumes that the variant has been converted to a biallelic representation.

	A struct with two elements: the expected heterozygous frequency according to Hardy-Weinberg equilibrium and the associated p-value.

	call_summary_stats

	The genotypes array

	A struct containing the following summary stats:

	callRate: The fraction of samples with a called genotype

	nCalled: The number of samples with a called genotype

	nUncalled: The number of samples with a missing or uncalled genotype, as represented by a ‘.’ in a VCF or -1 in a DataFrame.

	nHet: The number of heterozygous samples

	nHomozygous: An array with the number of samples that are homozygous for each allele. The 0th element describes how many sample are hom-ref.

	nNonRef: The number of samples that are not hom-ref

	nAllelesCalled: An array with the number of times each allele was seen

	alleleFrequencies: An array with the frequency for each allele

	dp_summary_stats

	The genotypes array

	A struct containing the min, max, mean, and sample standard deviation for genotype depth (DP in VCF v4.2 specificiation) across all samples

	gq_summary_stats

	The genotypes array

	A struct containing the min, max, mean, and sample standard deviation for genotype quality (GQ in VCF v4.2 specification) across all samples

Notebook

 How to run a notebook
 Get notebook link

 Sample Quality Control

Sample Quality Control

You can calculate quality control statistics on your variant data using Spark SQL functions, which
can be expressed in Python, R, Scala, or SQL.

Each of these functions returns an array of structs containing metrics for one sample. If sample ids
are including in the input DataFrame, they will be propagated to the output. The functions assume
that the genotypes in each row of the input DataFrame contain the same samples in the same order.

	Functions

	Arguments

	Return

	sample_call_summary_stats

	referenceAllele string, alternateAlleles array of strings, genotypes array calls

	A struct containing the following summary stats:

	callRate: The fraction of variants where this sample has a called genotype. Equivalent to
nCalled / (nCalled + nUncalled)

	nCalled: The number of variants where this sample has a called genotype

	nUncalled: The number of variants where this sample does not have a called genotype

	nHomRef: The number of variants where this sample is homozygous reference

	nHet: The number of variants where this sample is heterozygous

	nHomVar: The number of variants where this sample is homozygous non reference

	nSnv: The number of calls where this sample has a single nucleotide variant. This value is the sum of nTransition and nTransversion

	nInsertion: Insertion variant count

	nDeletion: Deletion variant count

	nTransition: Transition count

	nTransversion: Transversion count

	nSpanningDeletion: The number of calls where this sample has a spanning deletion

	rTiTv: Ratio of transitions to tranversions (nTransition / nTransversion)

	rInsertionDeletion: Ratio of insertions to deletions (nInsertion / nDeletion)

	rHetHomVar: Ratio of heterozygous to homozygous variant calls (nHet / nHomVar)

	sample_dp_summary_stats

	genotypes array with a depth field

	A struct with min, max, mean, and stddev

	sample_gq_summary_stats

	genotypes array with a conditionalQuality field

	A struct with min, max, mean, and stddev

Computing user-defined sample QC metrics

In addition to the built-in QC functions discussed above, Glow provides two ways to compute
user-defined per-sample statistics.

aggregate_by_index

First, you can aggregate over each sample in a genotypes array using the aggregate_by_index
function.

aggregate_by_index(array, initial_state, update_function, merge_function, eval_function)

	Name

	Type

	Description

	array

	array<T>

	An array-typed column. There are no requirements on the element datatype. This array is expected to be the same length for each row in the input DataFrame. The output of aggregate_by_index is an array with the same length as each input row.

	initial_state

	U

	The initial aggregation state for each sample.

	update_function

	<U, T> -> U

	A function that returns a new single sample aggregation state given the current aggregation state and a new data element.

	merge_function

	<U, U> -> U

	A function that combines two single sample aggregation states. This function is necessary since the aggregation is computed in a distributed manner across all nodes in the cluster.

	eval_function (optional)

	U -> V

	A function that returns the output for a sample given that sample’s aggregation state. This function is optional. If it is not specified, the aggregation state will be returned.

For example, this code snippet uses aggregate_by_index to compute the mean for each array
position:

aggregate_by_index(
 array_col,
 (0d, 0l),
 (state, element) -> (state.col1 + element, state.col2 + 1),
 (state1, state2) -> (state1.col1 + state2.col1, state1.col2 + state2.col2),
 state -> state.col1 / state.col2)

Explode and aggregate

If your dataset is not in a normalized, pVCF-esque shape, or if you want the aggregation output in a
table rather than a single array, you can explode the genotypes array and use any of the
aggregation functions built into Spark. For example, this code snippet computes the number of sites
with a non-reference allele for each sample:

import pyspark.sql.functions as fx
exploded_df = df.withColumn("genotype", fx.explode("genotypes"))\
 .withColumn("hasNonRef", fx.expr("exists(genotype.calls, call -> call != -1 and call != 0)"))

agg = exploded_df.groupBy("genotype.sampleId", "hasNonRef")\
 .agg(fx.count(fx.lit(1)))\
 .orderBy("sampleId", "hasNonRef")

Notebook

 How to run a notebook
 Get notebook link

 Liftover

Liftover

LiftOver converts genomic data between reference assemblies. The UCSC liftOver tool [https://genome.ucsc.edu/cgi-bin/hgLiftOver] uses a chain file [https://genome.ucsc.edu/goldenPath/help/chain.html] to
perform simple coordinate conversion, for example on BED files [https://genome.ucsc.edu/FAQ/FAQformat.html#format1]. The Picard LiftOverVcf tool [https://gatk.broadinstitute.org/hc/en-us/articles/360036857991-LiftoverVcf-Picard] also uses the new
reference assembly file [https://gatk.broadinstitute.org/hc/en-us/articles/360035531652?id=11013] to transform variant information (eg. alleles and INFO fields).
Glow can be used to run coordinate liftOver and variant liftOver.

Create a liftOver cluster

For both coordinate and variant liftOver, you need a chain file on every node of the cluster.
On a Databricks cluster, an example of a
cluster-scoped init script [https://docs.databricks.com/clusters/init-scripts.html#cluster-scoped-init-scripts]
you can use to download the required file for liftOver from the b37 to the hg38 reference assembly is as follows:

#!/usr/bin/env bash
set -ex
set -o pipefail
mkdir /opt/liftover
curl https://raw.githubusercontent.com/broadinstitute/gatk/master/scripts/funcotator/data_sources/gnomAD/b37ToHg38.over.chain --output /opt/liftover/b37ToHg38.over.chain

Coordinate liftOver

To perform liftOver for genomic coordinates, use the function lift_over_coordinates. lift_over_coordinates has
the following parameters.

	chromosome: string

	start: long

	end: long

	chain file: string (constant value, such as one created with lit())

	minimum fraction of bases that must remap: double (optional, defaults to .95)

The returned struct has the following values if liftOver succeeded. If not, the function returns null.

	contigName: string

	start: long

	end: long

output_df = input_df.withColumn('lifted', glow.lift_over_coordinates('contigName', 'start',
 'end', chain_file, 0.99))

Variant liftOver

For genetic variant data, use the lift_over_variants transformer. In addition to performing liftOver for genetic
coordinates, variant liftOver performs the following transformations:

	Reverse-complement and left-align the variant if needed

	Adjust the SNP, and correct allele-frequency-like INFO fields and the relevant genotypes if the reference and alternate alleles have
been swapped in the new genome build

Pull a target assembly reference file down to every node in the Spark cluster in addition to a chain file before
performing variant liftOver.

The lift_over_variants transformer operates on a DataFrame containing genetic variants and supports the following
options:

	Parameter

	Default

	Description

	chain_file

	n/a

	The path of the chain file.

	reference_file

	n/a

	The path of the target reference file.

	min_match_ratio

	.95

	Minimum fraction of bases that must remap.

The output DataFrame’s schema consists of the input DataFrame’s schema with the following fields appended:

	INFO_SwappedAlleles: boolean (null if liftOver failed, true if the reference and alternate alleles were
swapped, false otherwise)

	INFO_ReverseComplementedAlleles: boolean (null if liftover failed, true if the reference and alternate
alleles were reverse complemented, false otherwise)

	liftOverStatus: struct

	success: boolean (true if liftOver succeeded, false otherwise)

	errorMessage: string (null if liftOver succeeded, message describing reason for liftOver failure otherwise)

If liftOver succeeds, the output row contains the liftOver result and liftOverStatus.success is true.
If liftOver fails, the output row contains the original input row, the additional INFO fields are null,
liftOverStatus.success is false, and liftOverStatus.errorMessage contains the reason liftOver failed.

output_df = glow.transform('lift_over_variants', input_df, chain_file=chain_file, reference_file=reference_file)

Liftover notebook

 How to run a notebook
 Get notebook link

 Variant Normalization

Variant Normalization

Different genomic analysis tools often represent the same genomic variant in different ways, making it non-trivial to integrate and compare variants across call sets. Therefore, variant normalization is an essential step to be applied on variants before further downstream analysis to make sure the same variant is represented identically in different call sets. Normalization is achieved by making sure the variant is parsimonious and left-aligned (see Variant Normalization [https://genome.sph.umich.edu/wiki/Variant_Normalization] for more details).

Glow provides variant normalization capabilities as a DataFrame transformer as well as a SQL expression function with a Python API, bringing unprecedented scalability to this operation.

Note

Glow’s variant normalization algorithm follows the same logic as those used in normalization tools such as bcftools norm [https://www.htslib.org/doc/bcftools.html#norm] and vt normalize [https://genome.sph.umich.edu/wiki/Vt#Normalization]. This normalization logic is different from the one used by GATK’s LeftAlignAndTrimVariants [https://gatk.broadinstitute.org/hc/en-us/articles/360037225872-LeftAlignAndTrimVariants], which sometimes yields incorrect normalization (see Variant Normalization [https://genome.sph.umich.edu/wiki/Variant_Normalization] for more details).

normalize_variants Transformer

The normalize_variants transformer can be applied to normalize a variant DataFrame, such as one generated by loading VCF or BGEN files. The output of the transformer is described under the replace_columns option below.

Usage

Assuming df_original is a variable of type DataFrame which contains the genomic variant records, and ref_genome_path is a variable of type String containing the path to the reference genome file, a minimal example of using this transformer for normalization is as follows:

PythonScala
df_normalized = glow.transform("normalize_variants", df_original, reference_genome_path=ref_genome_path)

df_normalized = Glow.transform("normalize_variants", df_original, Map("reference_genome_path" -> ref_genome_path))

Options

The normalize_variants transformer has the following options:

	Option

	Type

	Possible values and description

	reference_genome_path

	string

	Path to the reference genome .fasta or .fa file. This file must be accompanied with a .fai index file in the same folder.

	replace_columns

	boolean

	

False: The transformer does not modify the original start, end, referenceAllele and alternateAlleles columns. Instead, a StructType column called normalizationResult is added to the DataFrame. This column contains the normalized start, end, referenceAllele, and alternateAlleles columns as well as the normalizationStatus StructType as the fifth field, which contains the following subfields:

changed: Indicates whether the variant data was changed as a result of normalization

errorMessage: An error message in case the attempt at normalizing the row hit an error. In this case, the changed field will be set to False. If no errors occur this field will be null. In case of error, the first four fields in normalizationResult will be null.

True (default): The original start, end, referenceAllele, and alternateAlleles columns are replaced with the normalized values in case they have changed. Otherwise (in case of no change or an error), the original start, end, referenceAllele, and alternateAlleles are not modified. A StructType normalizationStatus column is added to the DataFrame with the same subfields explained above.

	mode (deprecated)

	string

	

normalize: Only normalizes the variants (if user does not pass the option, normalize is assumed as default)

split_and_normalize: Split multiallelic variants to biallelic variants and then normalize the variants. This usage is deprecated. Instead, use split_multiallelics transformer followed by normalize_variants transformer.

split: Only split the multiallelic variants to biallelic without normalizing. This usage is deprecated. Instead, use split_multiallelics transformer.

normalize_variant Function

The normalizer can also be used as a SQL expression function. See Glow PySpark Functions for details on how to use it in the Python API. An example of an expression using the normalize_variant function is as follows:

from pyspark.sql.functions import lit
normalization_expr = glow.normalize_variant('contigName', 'start', 'end', 'referenceAllele', 'alternateAlleles', ref_genome_path)
df_normalized = df_original.withColumn('normalizationResult', normalization_expr)

Variant normalization notebook

 How to run a notebook
 Get notebook link

 Split Multiallelic Variants

Split Multiallelic Variants

Splitting multiallelic variants to biallelic variants is a transformation sometimes required before further downstream analysis. Glow provides the split_multiallelics transformer to be applied on a variant DataFrame to split multiallelic variants in the DataFrame to biallelic variants. This transformer is able to handle any number of ALT alleles and any ploidy.

Note

The splitting logic used by the split_multiallelics transformer is the same as the one used by the vt decompose tool [https://genome.sph.umich.edu/wiki/Vt#Decompose] of the vt package with option -s (note that the example provided at vt decompose user manual page [https://genome.sph.umich.edu/wiki/Vt#Decompose] does not reflect the behavior of vt decompose -s completely correctly).

The precise behavior of the split_multiallelics transformer is presented below:

	A given multiallelic row with \(n\) ALT alleles is split to \(n\) biallelic rows, each with one of the ALT alleles of the original multiallelic row. The REF allele in all split rows is the same as the REF allele in the multiallelic row.

	Each INFO field is appropriately split among split rows if it has the same number of elements as number of ALT alleles, otherwise it is repeated in all split rows. The boolean INFO field splitFromMultiAllelic is added/modified to reflect whether the new row is the result of splitting a multiallelic row through this transformation or not. A new INFO field called OLD_MULTIALLELIC is added to the DataFrame, which for each split row, holds the CHROM:POS:REF/ALT of its original multiallelic row. Note that the INFO field must be flattened (as explained here) in order to be split by this transformer. Unflattened INFO fields (such as those inside an attributes field) will not be split, but just repeated in whole across all split rows.

	Genotype fields for each sample are treated as follows: The GT field becomes biallelic in each row, where the original ALT alleles that are not present in that row are replaced with no call. The fields with number of entries equal to number of REF + ALT alleles, are properly split into rows, where in each split row, only entries corresponding to the REF allele as well as the ALT allele present in that row are kept. The fields which follow colex order (e.g., GL, PL, and GP) are properly split between split rows where in each row only the elements corresponding to genotypes comprising of the REF and ALT alleles in that row are listed. Other genotype fields are just repeated over the split rows.

	Any other field in the DataFrame is just repeated across the split rows.

As an example (shown in VCF file format), the following multiallelic row

#CHROM POS ID REF ALT QUAL FILTER INFO FORMAT SAMPLE1
20 101 . A ACCA,TCGG . PASS VC=INDEL;AC=3,2;AF=0.375,0.25;AN=8 GT:AD:DP:GQ:PL 0/1:2,15,31:30:99:2407,0,533,697,822,574

will be split into the following two biallelic rows:

#CHROM POS ID REF ALT QUAL FILTER INFO FORMAT SAMPLE1
20 101 . A ACCA . PASS VC=INDEL;AC=3;AF=0.375;AN=8;OLD_MULTIALLELIC=20:101:A/ACCA/TCGG GT:AD:DP:GQ:PL 0/1:2,15:30:99:2407,0,533
20 101 . A TCGG . PASS VC=INDEL;AC=2;AF=0.25;AN=8;OLD_MULTIALLELIC=20:101:A/ACCA/TCGG GT:AD:DP:GQ:PL 0/.:2,31:30:99:2407,697,574

Usage

Assuming df_original is a variable of type DataFrame which contains the genomic variant records, an example of using this transformer for splitting multiallelic variants is:

PythonScala
df_split = glow.transform("split_multiallelics", df_original)

df_split = Glow.transform("split_multiallelics", df_original)

Tip

The split_multiallelics transformer is often significantly faster if the whole-stage code generation feature of Spark Sql is turned off. Therefore, it is recommended that you temporarily turn off this feature using the following command before using this transformer.

PythonScala
spark.conf.set("spark.sql.codegen.wholeStage", False)

spark.conf.set("spark.sql.codegen.wholeStage", false)

Remember to turn this feature back on after your split DataFrame is materialized.

Split Multiallelic Variants notebook

 How to run a notebook
 Get notebook link

 Merging Variant Datasets

Merging Variant Datasets

You can use Glow and Spark to merge genomic variant datasets from non-overlapping sample sets into
a multi-sample dataset. In these examples, we will read from VCF files, but the same logic works
on DataFrames backed by other file formats.

First, read the VCF files into a single Spark DataFrame:

from pyspark.sql.functions import *

df = spark.read.format('vcf').load([path1, path2])

Alternatively, you can use the "union" DataFrame method if the VCF files have the same schema
df1 = spark.read.format('vcf').load(path1)
df2 = spark.read.format('vcf').load(path2)
df = df1.union(df2)

The resulting DataFrame contains all records from the VCFs you want to merge, but the genotypes from
different samples at the same site have not been combined. You can use an aggregation to combine the
genotype arrays.

from pyspark.sql.functions import *

merged_df = df.groupBy('contigName', 'start', 'end', 'referenceAllele', 'alternateAlleles')\
 .agg(sort_array(flatten(collect_list('genotypes'))).alias('genotypes'))

Important

When reading VCF files for a merge operation, sampleId must be the first field in the
genotype struct. This is the default Glow schema.

The genotypes from different samples now appear in the same genotypes array.

Note

If the VCFs you are merging contain different sites, elements will be missing from the genotypes
array after aggregation. Glow automatically fills in missing genotypes when writing to
bigvcf, so an exported VCF will still contain all samples.

Aggregating INFO fields

To preserve INFO fields in a merge, you can use the aggregation functions in Spark. For instance, to
emit an INFO_DP column that is the sum of the INFO_DP columns across all samples:

from pyspark.sql.functions import *

merged_df = df.groupBy('contigName', 'start', 'end', 'referenceAllele', 'alternateAlleles')\
 .agg(sort_array(flatten(collect_list('genotypes'))).alias('genotypes'),
 sum('INFO_DP').alias('INFO_DP'))

Joint genotyping

The merge logic in this document allows you to quickly aggregate genotyping array data or single
sample VCFs. For a more sophisticated aggregation that unifies alleles at overlapping sites and uses
cohort-level statistics to refine genotype calls, we recommend running a joint genotyping pipeline.

Notebook

 How to run a notebook
 Get notebook link

 Hail Interoperation

Hail Interoperation

Glow includes functionality to enable conversion between a
Hail MatrixTable [https://hail.is/docs/0.2/overview/matrix_table.html] and a Spark DataFrame, similar to one created
with the native Glow datasources.

Create a Hail cluster

To use the Hail interoperation functions, you need Hail to be installed on the cluster.
On a Databricks cluster,
install Hail with an environment variable [https://docs.databricks.com/applications/genomics/tertiary/hail.html#create-a-hail-cluster].
See the Hail installation documentation [https://hail.is/docs/0.2/getting_started.html] to install Hail in other setups.

Convert to a Glow DataFrame

Convert from a Hail MatrixTable to a Glow-compatib