
glow Documentation

Glow Project

Dec 02, 2021

CONTENTS

1 Introduction to Glow 3

2 Getting Started 5
2.1 Running Locally . 5
2.2 Notebooks embedded in the docs . 6
2.3 Getting started on Databricks . 6
2.4 Getting started on other cloud services . 6

3 GWAS Tutorial 7
3.1 1. Quality Control . 7
3.2 2. Glow Whole Genome Regression (GloWGR) . 7
3.3 3. Regression . 7

4 Benchmarks 9
4.1 Glow vs Hail comparison . 9
4.2 Correlation of Glow and Hail regression P values . 9

5 Variant Data Manipulation 11
5.1 Data Simulation . 11
5.2 Read and Write VCF, Plink, and BGEN with Spark . 12
5.3 Read Genome Annotations (GFF3) as a Spark DataFrame . 15
5.4 Create a Genomics Delta Lake . 18
5.5 Variant Quality Control . 18
5.6 Sample Quality Control . 20
5.7 Liftover . 23
5.8 Variant Normalization . 25
5.9 Split Multiallelic Variants . 27
5.10 Merging Variant Datasets . 29
5.11 Hail Interoperation . 30
5.12 Utility Functions . 31

6 Tertiary Analysis 35
6.1 Parallelizing Command-Line Bioinformatics Tools With the Pipe Transformer 35
6.2 Using Python Statistics Libraries . 38
6.3 GloWGR: Whole Genome Regression . 38
6.4 GloWGR: Genome-Wide Association Study (GWAS) Regression Tests 51

7 Troubleshooting 55

8 Contributing 57
8.1 Raise Issues . 57

i

8.2 Join the monthly office hours . 57
8.3 Contribute to the codebase . 57

9 Blog Posts 61
9.1 Introducing GloWGR: An industrial-scale, ultra-fast and sensitive method for genetic association studies 61
9.2 Glow 0.4 Enables Integration of Genomic Variant and Annotation Data 65
9.3 Glow 0.3.0 Introduces Several New Large-Scale Genomic Analysis Features 72
9.4 Streamlining Variant Normalization on Large Genomic Datasets . 77

10 Additional Resources 83
10.1 Databricks notebooks . 83
10.2 External blog posts . 83

11 Python API 85
11.1 Glow Top-Level Functions . 85
11.2 PySpark Functions . 86
11.3 GloWGR . 97
11.4 Hail Interoperation Functions . 106

Python Module Index 107

Index 109

ii

glow Documentation

Glow is an open-source toolkit for working with genomic data at biobank-scale and beyond. The toolkit is natively
built on Apache Spark, the leading unified engine for big data processing and machine learning, enabling genomics
workflows to scale to population levels.

CONTENTS 1

https://projectglow.io/
https://github.com/projectglow/glow

glow Documentation

2 CONTENTS

CHAPTER

ONE

INTRODUCTION TO GLOW

Genomics data has been doubling every seven months globally. It has reached a scale where genomics has become
a big data problem. However, most tools for working with genomics data run on single nodes and will not scale.
Furthermore, it has become challenging for scientists to manage storage, analytics and sharing of public data.

Glow solves these problems by bridging bioinformatics and the big data ecosystem. It enables bioinformaticians and
computational biologists to leverage best practices used by data engineers and data scientists across industry.

Glow is built on Apache Spark and Delta Lake, enabling distributed computation on and distributed storage of genotype
data. The library is backwards compatible with genomics file formats and bioinformatics tools developed in academia,
enabling users to easily share data with collaborators.

When combined with Delta Lake, Glow solves the “n+1” problem in genomics, allowing continuous integration of and
analytics on whole genomes without data freezes.

Glow is used to:

• Ingest genotype data into a data lake that acts as a single source of truth.

• Perform joint-genotyping of genotype data on top of delta-lake.

• Run quality control, statistical analysis, and association studies on population-scale datasets.

• Build reproducible, production-grade genomics data pipelines that will scale to tens of trillions of records.

3

https://spark.apache.org/docs/latest/api/python/index.html
https://delta.io/

glow Documentation

Glow features:

• Genomic datasources: To read datasets in common file formats such as VCF, BGEN, and Plink into Spark
DataFrames.

• Genomic functions: Common operations such as computing quality control statistics, running regression tests,
and performing simple transformations are provided as Spark functions that can be called from Python, SQL,
Scala, or R.

• Data preparation building blocks: Glow includes transformations such as variant normalization and lift over to
help produce analysis ready datasets.

• Integration with existing tools: With Spark, you can write user-defined functions (UDFs) in Python, R, SQL, or
Scala. Glow also makes it easy to run DataFrames through command line tools.

• Integration with other data types: Genomic data can generate additional insights when joined with data sets such
as electronic health records, real world evidence, and medical images. Since Glow returns native Spark SQL
DataFrames, its simple to join multiple data sets together.

• GloWGR, a distributed version of the regenie method, rewritten from the ground up in Python.

4 Chapter 1. Introduction to Glow

https://rgcgithub.github.io/regenie/

CHAPTER

TWO

GETTING STARTED

2.1 Running Locally

Glow requires Apache Spark 3.1.2.

Python

Scala

If you don’t have a local Apache Spark installation, you can install it from PyPI:

pip install pyspark==3.1.2

or download a specific distribution.

Install the Python frontend from pip:

pip install glow.py

and then start the Spark shell with the Glow maven package:

./bin/pyspark --packages io.projectglow:glow-spark3_2.12:1.1.1 --conf spark.hadoop.io.
→˓compression.codecs=io.projectglow.sql.util.BGZFCodec

To start a Jupyter notebook instead of a shell:

PYSPARK_DRIVER_PYTHON=jupyter PYSPARK_DRIVER_PYTHON_OPTS=notebook ./bin/pyspark --
→˓packages io.projectglow:glow-spark3_2.12:1.1.1 --conf spark.hadoop.io.compression.
→˓codecs=io.projectglow.sql.util.BGZFCodec

And now your notebook is glowing! To access the Glow functions, you need to register them with the Spark session.

import glow
spark = glow.register(spark)
df = spark.read.format('vcf').load(path)

If you don’t have a local Apache Spark installation, download a specific distribution.

Start the Spark shell with the Glow maven package:

./bin/spark-shell --packages io.projectglow:glow-spark3_2.12:1.1.1 --conf spark.hadoop.
→˓io.compression.codecs=io.projectglow.sql.util.BGZFCodec

To access the Glow functions, you need to register them with the Spark session.

5

https://spark.apache.org/downloads.html
http://spark.apache.org/docs/latest/rdd-programming-guide.html#using-the-shell
https://spark.apache.org/downloads.html
http://spark.apache.org/docs/latest/rdd-programming-guide.html#using-the-shell

glow Documentation

import io.projectglow.Glow
val sess = Glow.register(spark)
val df = sess.read.format("vcf").load(path)

2.2 Notebooks embedded in the docs

To demonstrate use cases of Glow, documentation pages are accompanied by embedded notebooks. Most code in these
notebooks can be run on Spark and Glow alone, but functions such as display() or dbutils() are only available on
Databricks. See Databricks notebooks for more info.

Also note that the path to datasets used as example in these notebooks is usually a folder in /databricks-datasets/
genomics/ and should be replaced with the appropriate path based on your own folder structure.

2.3 Getting started on Databricks

The Databricks documentation shows how to get started with Glow on,

• Amazon Web Services (AWS - docs)

• Microsoft Azure (docs)

• Google Cloud Platform (GCP - docs)

2.4 Getting started on other cloud services

Please submit a pull request to add a guide for other cloud services.

6 Chapter 2. Getting Started

https://docs.databricks.com/applications/genomics/genomics-libraries/glow.html
https://docs.microsoft.com/en-us/azure/databricks/applications/genomics/genomics-libraries/glow
https://docs.gcp.databricks.com/applications/genomics/genomics-libraries/glow.html

CHAPTER

THREE

GWAS TUTORIAL

This is a quickstart tutorial for performing genome-wide association studies using Glow.

You can view html versions of the notebooks and download them from the bottom of this page.

The notebooks are written in Python, with some visualization in R.

Tip: We recommend running the Data Simulation notebooks first to prepare data for this tutorial before trying with
your own data.

Important: Notebooks in the Glow documentation are tested nightly.

3.1 1. Quality Control

The first notebook in this series prepares data by performing standard quality control procedures on simulated genotype
data.

3.2 2. Glow Whole Genome Regression (GloWGR)

GloWGR implements a distributed version of the Regenie method. Please review the Regenie paper in Nature Genetics
and the Regenie Github repo before implementing this method on real data.

3.3 3. Regression

The GloWGR notebook calculated offsets that are used in the genetic association study below to control for population
structure and relatedness.

7

https://doi.org/10.1038/s41588-021-00870-7
https://github.com/rgcgithub/regenie

glow Documentation

3.3.1 Quality control

<div class='embedded-notebook'> How
to run a notebook Get
notebook link</p> <div class='embedded-notebook-container'> <div class='loading-spinner'></div>
<iframe src="./_static/notebooks/tertiary/1_quality_control.html" id='-5453940863633643721' height="1000px"
width="100%" style="overflow-y:hidden;" scrolling="no"></iframe> </div> </div>

3.3.2 Quantitative glow whole genome regression

<div class='embedded-notebook'> How to
run a notebook Get note-
book link</p> <div class='embedded-notebook-container'> <div class='loading-spinner'></div> <iframe
src="./_static/notebooks/tertiary/2_quantitative_glowgr.html" id='1102405291522834760' height="1000px"
width="100%" style="overflow-y:hidden;" scrolling="no"></iframe> </div> </div>

3.3.3 Linear regression

<div class='embedded-notebook'> How
to run a notebook Get
notebook link</p> <div class='embedded-notebook-container'> <div class='loading-spinner'></div>
<iframe src="./_static/notebooks/tertiary/3_linear_gwas_glow.html" id='5368041189453413539' height="1000px"
width="100%" style="overflow-y:hidden;" scrolling="no"></iframe> </div> </div>

3.3.4 Binary glow whole genome regression

<div class='embedded-notebook'> How
to run a notebook Get
notebook link</p> <div class='embedded-notebook-container'> <div class='loading-spinner'></div>
<iframe src="./_static/notebooks/tertiary/4_binary_glowgr.html" id='3986340757449258839' height="1000px"
width="100%" style="overflow-y:hidden;" scrolling="no"></iframe> </div> </div>

3.3.5 Logistic regression

<div class='embedded-notebook'> How to
run a notebook Get note-
book link</p> <div class='embedded-notebook-container'> <div class='loading-spinner'></div> <iframe
src="./_static/notebooks/tertiary/5_logistic_gwas_glow.html" id='-1172836101128616602' height="1000px"
width="100%" style="overflow-y:hidden;" scrolling="no"></iframe> </div> </div>

8 Chapter 3. GWAS Tutorial

CHAPTER

FOUR

BENCHMARKS

The Glow continuous integration tests benchmark each step in the pipeline.

These results are compared to equivalent steps to Hail (see notebooks).

This is tracked so costs can be driven down for each step.

4.1 Glow vs Hail comparison

<div class='embedded-notebook'> How to
run a notebook Get
notebook link</p> <div class='embedded-notebook-container'> <div class='loading-spinner'></div> <iframe
src="./_static/notebooks/tertiary/8_pipeline_runs_comparison.html" id='-7011436153570838568' height="1000px"
width="100%" style="overflow-y:hidden;" scrolling="no"></iframe> </div> </div>

4.2 Correlation of Glow and Hail regression P values

<div class='embedded-notebook'> How to
run a notebook Get
notebook link</p> <div class='embedded-notebook-container'> <div class='loading-spinner'></div> <iframe
src="./_static/notebooks/tertiary/9_compare_hail_to_glow.html" id='-2037742580272996371' height="1000px"
width="100%" style="overflow-y:hidden;" scrolling="no"></iframe> </div> </div>

9

glow Documentation

10 Chapter 4. Benchmarks

CHAPTER

FIVE

VARIANT DATA MANIPULATION

Glow offers functionalities to extract, transform and load (ETL) genomic variant data into Spark DataFrames, enabling
manipulation, filtering, quality control and transformation between file formats.

5.1 Data Simulation

These data simulation notebooks generate phenotypes, covariates and genotypes at a user-defined scale. This dataset
can be used for integration and scale-testing.

5.1.1 Simulate Covariates & Phenotypes

This data simulation notebooks uses Pandas to simulate quantitative and binary phenotypes and covariates. Please
ensure n_samples is the same as the genotype simulation notebook.

Notebook

<div class='embedded-notebook'> How to run
a notebook Get
notebook link</p> <div class='embedded-notebook-container'> <div class='loading-spinner'></div>
<iframe src="../_static/notebooks/etl/1_simulate_covariates_phenotypes_offset.html" id='-4462542602731331055'
height="1000px" width="100%" style="overflow-y:hidden;" scrolling="no"></iframe> </div> </div>

5.1.2 Simulate Genotypes

This data simulation notebook downloads chromosomes 21 and 22 from the 1000 Genomes Project, and returns a
Delta Lake table with simulated genotypes for n_samples and n_variants, maintaining hardy-weinberg equilibrium
and allele frequency for each variant.

11

glow Documentation

Notebook

<div class='embedded-notebook'> How
to run a notebook Get
notebook link</p> <div class='embedded-notebook-container'> <div class='loading-spinner'></div>
<iframe src="../_static/notebooks/etl/2_simulate_delta_pvcf.html" id='-5945567130678044599' height="1000px"
width="100%" style="overflow-y:hidden;" scrolling="no"></iframe> </div> </div>

5.2 Read and Write VCF, Plink, and BGEN with Spark

Glow makes it possible to read and write variant data at scale using Spark SQL.

Tip: This topic uses the terms “variant” or “variant data” to refer to single nucleotide variants and short indels.

5.2.1 VCF

You can use Spark to read VCF files just like any other file format that Spark supports through the DataFrame API
using Python, R, Scala, or SQL.

df = spark.read.format("vcf").load(path)
assert_rows_equal(df.select("contigName", "start").head(), Row(contigName='17',␣
→˓start=504217))

The returned DataFrame has a schema that mirrors a single row of a VCF. Information that applies to an entire variant
(SNV or indel), such as the contig name, start and end positions, and INFO attributes, is contained in columns of the
DataFrame. The genotypes, which correspond to the GT FORMAT fields in a VCF, are contained in an array with one
entry per sample. Each entry is a struct with fields that are described in the VCF header.

The path that you provide can be the location of a single file, a directory that contains VCF files, or a Hadoop glob
pattern that identifies a group of files. Sample IDs are not included by default. See the parameters table below for
instructions on how to include them.

You can control the behavior of the VCF reader with a few parameters. All parameters are case insensitive.

Param-
eter

Type De-
fault

Description

includeSampleIdsbooleantrue If true, each genotype includes the name of the sample ID it belongs to. Sample names
increase the size of each row, both in memory and on storage.

flattenInfoFieldsbooleantrue If true, each info field in the input VCF will be converted into a column in the output
DataFrame with each column typed as specified in the VCF header. If false, all info fields
will be contained in a single column with a string -> string map of info keys to values.

validationStringencystring silentControls the behavior when parsing a malformed row. If silent, the row will be dropped
silently. If lenient, the row will be dropped and a warning will be logged. If strict,
an exception will be thrown and reading will fail.

Note: Starting from Glow 0.4.0, the splitToBiallelic option for the VCF reader no longer exists. To split multi-
allelic variants to biallelics use the split_multiallelics transformer after loading the VCF.

12 Chapter 5. Variant Data Manipulation

glow Documentation

Note: Glow includes a VCF reader that uses htsjdk for initial parsing as well as a reader that parses VCF lines to Spark
rows directly.

As of release 1.0.0, the direct reader is enabled by default. To use the htsjdk based reader, set the Spark config io.
projectglow.vcf.fastReaderEnabled to false.

Important: The VCF reader uses the 0-start, half-open (zero-based) coordinate system. This means that the start
values in the DataFrame will be 1 lower than the values that appear in the VCF file. For instance, if a variant has a POS
value of 10 in a VCF file, the start column in the DataFrame will contain the value 9. When writing to a VCF file,
Glow converts positions back to a 1-based coordinate system as required by the VCF specification.

You can save a DataFrame as a VCF file, which you can then read with other tools. To write a DataFrame as a single
VCF file specify the format "bigvcf":

df.write.format("bigvcf").save(path)

The file extension of the output path determines which, if any, compression codec should be used. For instance, writing
to a path such as /genomics/my_vcf.vcf.bgz will cause the output file to be block gzipped.

If you’d rather save a sharded VCF where each partition saves to a separate file:

df.write.format("vcf").save(path)

To control the behavior of the sharded VCF writer, you can provide the following option:

Pa-
ram-
eter

Type De-
fault

Description

compressionstring n/a A compression codec to use for the output VCF file. The value can be the full name of a
compression codec class (for example GzipCodec) or a short alias (for example gzip). To
use the block gzip codec, specify bgzf.

For both the single and sharded VCF writer, you can use the following options:

Parame-
ter

Type De-
fault

Description

vcfHeader string infer If infer, infers the header from the DataFrame schema. This value can be a complete
header starting with ## or a Hadoop filesystem path to a VCF file. The header from this
file is used as the VCF header for each partition.

validationStringencystring silentControls the behavior when parsing a malformed row. If silent, the row will be dropped
silently. If lenient, the row will be dropped and a warning will be logged. If strict,
an exception will be thrown and writing will fail.

If the header is inferred from the DataFrame, the sample IDs are derived from the rows. If the sample IDs are missing,
they will be represented as sample_n, for which n reflects the index of the sample in a row. In this case, there must be
the same number of samples in each row.

• For the big VCF writer, the inferred sample IDs are the distinct set of all sample IDs from the DataFrame.

• For the sharded VCF writer, the sample IDs are inferred from the first row of each partition and must be the same
for each row. If the rows do not contain the same samples, provide a complete header of a filesystem path to a
VCF file.

5.2. Read and Write VCF, Plink, and BGEN with Spark 13

https://github.com/samtools/htsjdk

glow Documentation

5.2.2 BGEN

Glow provides the ability to read BGEN files, including those distributed by the UK Biobank project.

df = spark.read.format("bgen").load(path)

As with the VCF reader, the provided path can be a file, directory, or glob pattern. If .bgi index files are located in
the same directory as the data files, the reader uses the indexes to more efficiently traverse the data files. Data files can
be processed even if indexes do not exist. The schema of the resulting DataFrame matches that of the VCF reader.

Parameter Type De-
fault

Description

useBgenIndex boolean true If true, use .bgi index files.
sampleFilePath string n/a Path to a .sample Oxford sample information file containing sample IDs if

not stored in the BGEN file.
sampleIdColumn string ID_2 Name of the column in the .sample file corresponding to the sample IDs.
emitHardCalls boolean true If true, adds genotype calls for diploids based on the posterior probabilities.
hardCallThresholddou-

ble
0.9 Sets the threshold for hard calls.

Important: The BGEN reader and writer assume that the first allele in the .bgen file is the reference allele, and that
all following alleles are alternate alleles.

You can use the DataFrameWriter API to save a single BGEN file, which you can then read with other tools.

df.write.format("bigbgen").save(path)

If the genotype arrays are missing ploidy and/or phasing information, the BGEN writer infers the values using the
provided values for ploidy, phasing, or posteriorProbabilities in the genotype arrays. You can provide the value
for ploidy using an integer value ploidy or it can be inferred using the length of an array calls, and you can provide
the phasing information using a boolean value phased.

To control the behavior of the BGEN writer, you can provide the following options:

Parameter Type De-
fault

Description

bitsPerProbabilityinte-
ger

16 Number of bits used to represent each probability value. Must be 8, 16, or 32.

maximumInferredPloidyinte-
ger

10 The maximum ploidy that will be inferred for unphased data if ploidy is missing.

defaultInferredPloidyinte-
ger

2 The inferred ploidy if phasing and ploidy are missing, or ploidy is missing and
cannot be inferred from posteriorProbabilities.

defaultInferredPhasingbooleanfalse The inferred phasing if phasing is missing and cannot be inferred from
posteriorProbabilities.

14 Chapter 5. Variant Data Manipulation

glow Documentation

5.2.3 PLINK

Glow provides the ability to read binary PLINK binary PED (BED) files with accompanying BIM and FAM files. The
provided path can be a file or glob pattern.

df = spark.read.format("plink").load("{prefix}.bed".format(prefix=prefix))

The schema of the resulting DataFrame matches that of the VCF reader. The accompanying variant and sample infor-
mation files must be located at {prefix}.bim and {prefix}.fam.

Parameter Type De-
fault

Description

includeSampleIdsbooleantrue If true, each genotype includes the name of the sample ID it belongs to.
bimDelimiterstring (tab) Whitespace delimiter in the {prefix}.bim file.
famDelimiterstring (space) Whitespace delimiter in the {prefix}.fam file.
mergeFidIid booleantrue If true, sets the sample ID to the family ID and individual ID merged with an under-

score delimiter. If false, sets the sample ID to the individual ID.

Important: The PLINK reader sets the first allele in the .bed file as the alternate allele, and the second allele as the
reference allele.

Notebook

<div class='embedded-notebook'> How
to run a notebook Get notebook
link</p> <div class='embedded-notebook-container'> <div class='loading-spinner'></div> <iframe
src="../_static/notebooks/etl/variant-data.html" id='-3335633365753668663' height="1000px" width="100%"
style="overflow-y:hidden;" scrolling="no"></iframe> </div> </div>

5.3 Read Genome Annotations (GFF3) as a Spark DataFrame

GFF3 (Generic Feature Format Version 3) is a 9-column tab-separated text file format commonly used to store genomic
annotations. Typically, the majority of annotation data in this format appears in the ninth column, called attributes,
as a semi-colon-separated list of <tag>=<value> entries. If Spark’s standard csv data source is used to read GFF3
files, the whole list of attribute tag-value pairs will be read as a single string-typed column, making queries on these
tags/values cumbersome.

To address this issue, Glow provides the gff data source. In addition to loading the first 8 columns of GFF3 as properly
typed columns, the gff data source is able to parse all attribute tag-value pairs in the ninth column of GFF3 and create
an appropriately typed column for each tag. In each row, the column corresponding to a tag will contain the tag’s value
in that row (or null if the tag does not appear in the row).

Like any Spark data source, reading GFF3 files using the gff data source can be done in a single line of code:

df = spark.read.format("gff").load(path)

The gff data source supports all compression formats supported by Spark’s csv data source, including .gz and .bgz
files. It also supports reading globs of files in one command.

5.3. Read Genome Annotations (GFF3) as a Spark DataFrame 15

https://github.com/The-Sequence-Ontology/Specifications/blob/master/gff3.md

glow Documentation

Note: The gff data source ignores any comment and directive lines (lines starting with #) in the GFF3 file as well as
any FASTA lines that may appear at the end of the file.

5.3.1 Schema

1. Inferred schema

If no user-specified schema is provided (as in the example above), the data source infers the schema as follows:

• The first 8 fields of the schema (“base” fields) correspond to the first 8 columns of the GFF3 file. Their names,
types and order will be as shown below:

|-- seqId: string (nullable = true)
|-- source: string (nullable = true)
|-- type: string (nullable = true)
|-- start: long (nullable = true)
|-- end: long (nullable = true)
|-- score: double (nullable = true)
|-- strand: string (nullable = true)
|-- phase: integer (nullable = true)

Note: Although the start column in the GFF3 file is 1-based, the start field in the DataFrame will be 0-based
to match the general practice in Glow.

• The next fields in the inferred schema will be created as the result of parsing the attributes column of the GFF3
file. Each tag will have its own field in the schema. Fields corresponding to any “official” tag (those referred
to as tags with pre-defined meaning) come first, followed by fields corresponding to any other tag (“unofficial”
tags) in alphabetical order.

The complete list of official fields, their data types, and order are as shown below:

|-- ID: string (nullable = true)
|-- Name: string (nullable = true)
|-- Alias: string (nullable = true)
|-- Parent: array (nullable = true)
| |-- element: string (containsNull = true)
|-- Target: string (nullable = true)
|-- Gap: string (nullable = true)
|-- DerivesFrom: string (nullable = true)
|-- Note: array (nullable = true)
| |-- element: string (containsNull = true)
|-- Dbxref: array (nullable = true)
| |-- element: string (containsNull = true)
|-- OntologyTerm: array (nullable = true)
| |-- element: string (containsNull = true)
|-- Is_circular: boolean (nullable = true)

The unofficial fields will be of string type.

Note:

16 Chapter 5. Variant Data Manipulation

https://github.com/The-Sequence-Ontology/Specifications/blob/master/gff3.md

glow Documentation

– If any of official tags does not appear in any row of the GFF3 file, the corresponding field will be excluded
from the inferred schema.

– The official/unofficial field name will be exactly as the corresponding tag appears in the GFF3 file (in terms
of letter case).

– The parser is insensitive to the letter case of the tag, e.g., if the attributes column in the GFF3 file
contains both note and Note tags, they will be both mapped to the same column in the DataFrame. The
name of the column in this case will be either note or Note, chosen randomly.

2. User-specified schema

As with any Spark data source, the gff data source is also able to accept a user-specified schema through the .schema
command. The user-specified schema can have any subset of the base, official, and unofficial fields. The data source
is able to read only the specified base fields and parse out only the specified official and unofficial fields from the
attributes column of the GFF3 file. Here is an example of how the user can specify some base, official, and unofficial
fields while reading the GFF3 file:

mySchema = StructType(
[StructField('seqId', StringType()), # Base field
StructField('start', LongType()), # Base field
StructField('end', LongType()), # Base field
StructField('ID', StringType()), # Official field
StructField('Dbxref', ArrayType(StringType())), # Official field
StructField('mol_type', StringType())] # Unofficial field

)

df_user_specified = spark.read.format("gff").schema(mySchema).load(path)

Note:
• The base field names in the user-specified schema must match the names in the list above in a case-sensitive

manner.

• The official and unofficial fields will be matched with their corresponding tags in the GFF3 file in a case-and-
underscore-insensitive manner. For example, if the GFF3 file contains the official tag db_xref, a user-specified
schema field with the name dbxref, Db_Xref, or any other case-and-underscore-insensitive match will corre-
spond to that tag.

• The user can also include the original attributes column of the GFF3 file as a string field by including
StructField('attributes', StringType()) in the schema.

Notebook

<div class='embedded-notebook'> How
to run a notebook Get notebook
link</p> <div class='embedded-notebook-container'> <div class='loading-spinner'></div> <iframe
src="../_static/notebooks/etl/gff.html" id='9112952462453476048' height="1000px" width="100%" style="overflow-
y:hidden;" scrolling="no"></iframe> </div> </div>

5.3. Read Genome Annotations (GFF3) as a Spark DataFrame 17

glow Documentation

5.4 Create a Genomics Delta Lake

Genomics data is usually stored in specialized flat-file formats such as VCF or BGEN.

The example below shows how to ingest a VCF into a genomics Delta Lake table using Glow in Python (R, Scala, and
SQL are also supported).

You can use Delta tables for second-latency queries, performant range-joins (similar to the single-node bioinformatics
tool bedtools intersect), aggregate analyses such as calculating summary statistics, machine learning or deep learning.

Tip: We recommend ingesting VCF files into Delta tables once volumes reach >1000 samples, >10 billion genotypes
or >1 terabyte.

5.4.1 VCF to Delta Lake table notebook

<div class='embedded-notebook'> How
to run a notebook Get notebook
link</p> <div class='embedded-notebook-container'> <div class='loading-spinner'></div> <iframe
src="../_static/notebooks/etl/vcf2delta.html" id='1778207800216330597' height="1000px" width="100%"
style="overflow-y:hidden;" scrolling="no"></iframe> </div> </div>

5.5 Variant Quality Control

Glow includes a variety of tools for variant quality control.

Tip: This topic uses the terms “variant” or “variant data” to refer to single nucleotide variants and short indels.

You can calculate quality control statistics on your variant data using Spark SQL functions, which can be expressed in
Python, R, Scala, or SQL.

18 Chapter 5. Variant Data Manipulation

https://delta.io

glow Documentation

Function Arguments Return
hardy_weinberg The genotypes array. This func-

tion assumes that the variant has
been converted to a biallelic repre-
sentation.

A struct with two elements: the ex-
pected heterozygous frequency ac-
cording to Hardy-Weinberg equilib-
rium and the associated p-value.

call_summary_stats The genotypes array A struct containing the following
summary stats:

• callRate: The fraction of
samples with a called geno-
type

• nCalled: The number of
samples with a called geno-
type

• nUncalled: The number of
samples with a missing or
uncalled genotype, as repre-
sented by a ‘.’ in a VCF or -1
in a DataFrame.

• nHet: The number of het-
erozygous samples

• nHomozygous: An array with
the number of samples that
are homozygous for each al-
lele. The 0th element de-
scribes how many sample are
hom-ref.

• nNonRef: The number of
samples that are not hom-ref

• nAllelesCalled: An array
with the number of times each
allele was seen

• alleleFrequencies: An
array with the frequency for
each allele

dp_summary_stats The genotypes array A struct containing the min, max,
mean, and sample standard devia-
tion for genotype depth (DP in VCF
v4.2 specificiation) across all sam-
ples

gq_summary_stats The genotypes array A struct containing the min, max,
mean, and sample standard devia-
tion for genotype quality (GQ in
VCF v4.2 specification) across all
samples

5.5. Variant Quality Control 19

glow Documentation

5.5.1 Notebook

<div class='embedded-notebook'> How
to run a notebook Get note-
book link</p> <div class='embedded-notebook-container'> <div class='loading-spinner'></div> <iframe
src="../_static/notebooks/etl/variant-qc-demo.html" id='-1541539814457273929' height="1000px" width="100%"
style="overflow-y:hidden;" scrolling="no"></iframe> </div> </div>

5.6 Sample Quality Control

You can calculate quality control statistics on your variant data using Spark SQL functions, which can be expressed in
Python, R, Scala, or SQL.

Each of these functions returns an array of structs containing metrics for one sample. If sample ids are including in the
input DataFrame, they will be propagated to the output. The functions assume that the genotypes in each row of the
input DataFrame contain the same samples in the same order.

20 Chapter 5. Variant Data Manipulation

glow Documentation

Functions Arguments Return
sample_call_summary_stats referenceAllele string,

alternateAlleles array of
strings, genotypes array calls

A struct containing the following
summary stats:

• callRate: The fraction of
variants where this sample has
a called genotype. Equivalent
to nCalled / (nCalled +
nUncalled)

• nCalled: The number of
variants where this sample has
a called genotype

• nUncalled: The number of
variants where this sample
does not have a called geno-
type

• nHomRef: The number of
variants where this sample is
homozygous reference

• nHet: The number of variants
where this sample is heterozy-
gous

• nHomVar: The number of
variants where this sample is
homozygous non reference

• nSnv: The number of calls
where this sample has a single
nucleotide variant. This value
is the sum of nTransition
and nTransversion

• nInsertion: Insertion vari-
ant count

• nDeletion: Deletion variant
count

• nTransition: Transition
count

• nTransversion: Transver-
sion count

• nSpanningDeletion: The
number of calls where this
sample has a spanning dele-
tion

• rTiTv: Ratio of transitions to
tranversions (nTransition
/ nTransversion)

• rInsertionDeletion:
Ratio of insertions to dele-
tions (nInsertion /
nDeletion)

• rHetHomVar: Ratio of
heterozygous to homozy-
gous variant calls (nHet /
nHomVar)

sample_dp_summary_stats genotypes array with a depth field A struct with min, max, mean, and
stddev

sample_gq_summary_stats genotypes array with a
conditionalQuality field

A struct with min, max, mean, and
stddev

5.6. Sample Quality Control 21

glow Documentation

5.6.1 Computing user-defined sample QC metrics

In addition to the built-in QC functions discussed above, Glow provides two ways to compute user-defined per-sample
statistics.

aggregate_by_index

First, you can aggregate over each sample in a genotypes array using the aggregate_by_index function.

aggregate_by_index(array, initial_state, update_function, merge_function, eval_function)

Name Type Description
array array<T>An array-typed column. There are no requirements on the element datatype. This ar-

ray is expected to be the same length for each row in the input DataFrame. The output of
aggregate_by_index is an array with the same length as each input row.

initial_stateU The initial aggregation state for each sample.
update_function<U,

T>
-> U

A function that returns a new single sample aggregation state given the current aggregation
state and a new data element.

merge_function<U,
U>
-> U

A function that combines two single sample aggregation states. This function is necessary
since the aggregation is computed in a distributed manner across all nodes in the cluster.

eval_function
(optional)

U ->
V

A function that returns the output for a sample given that sample’s aggregation state. This
function is optional. If it is not specified, the aggregation state will be returned.

For example, this code snippet uses aggregate_by_index to compute the mean for each array position:

aggregate_by_index(
array_col,
(0d, 0l),
(state, element) -> (state.col1 + element, state.col2 + 1),
(state1, state2) -> (state1.col1 + state2.col1, state1.col2 + state2.col2),
state -> state.col1 / state.col2)

Explode and aggregate

If your dataset is not in a normalized, pVCF-esque shape, or if you want the aggregation output in a table rather than
a single array, you can explode the genotypes array and use any of the aggregation functions built into Spark. For
example, this code snippet computes the number of sites with a non-reference allele for each sample:

import pyspark.sql.functions as fx
exploded_df = df.withColumn("genotype", fx.explode("genotypes"))\
.withColumn("hasNonRef", fx.expr("exists(genotype.calls, call -> call != -1 and call !

→˓= 0)"))

agg = exploded_df.groupBy("genotype.sampleId", "hasNonRef")\
.agg(fx.count(fx.lit(1)))\
.orderBy("sampleId", "hasNonRef")

22 Chapter 5. Variant Data Manipulation

glow Documentation

Notebook

<div class='embedded-notebook'> How
to run a notebook Get note-
book link</p> <div class='embedded-notebook-container'> <div class='loading-spinner'></div> <iframe
src="../_static/notebooks/etl/sample-qc-demo.html" id='-3453623423093835265' height="1000px" width="100%"
style="overflow-y:hidden;" scrolling="no"></iframe> </div> </div>

5.7 Liftover

LiftOver converts genomic data between reference assemblies. The UCSC liftOver tool uses a chain file to perform
simple coordinate conversion, for example on BED files. The Picard LiftOverVcf tool also uses the new reference
assembly file to transform variant information (eg. alleles and INFO fields). Glow can be used to run coordinate
liftOver and variant liftOver.

5.7.1 Create a liftOver cluster

For both coordinate and variant liftOver, you need a chain file on every node of the cluster. On a Databricks cluster, an
example of a cluster-scoped init script you can use to download the required file for liftOver from the b37 to the hg38
reference assembly is as follows:

#!/usr/bin/env bash
set -ex
set -o pipefail
mkdir /opt/liftover
curl https://raw.githubusercontent.com/broadinstitute/gatk/master/scripts/funcotator/
→˓data_sources/gnomAD/b37ToHg38.over.chain --output /opt/liftover/b37ToHg38.over.chain

5.7.2 Coordinate liftOver

To perform liftOver for genomic coordinates, use the function lift_over_coordinates. lift_over_coordinates
has the following parameters.

• chromosome: string

• start: long

• end: long

• chain file: string (constant value, such as one created with lit())

• minimum fraction of bases that must remap: double (optional, defaults to .95)

The returned struct has the following values if liftOver succeeded. If not, the function returns null.

• contigName: string

• start: long

• end: long

output_df = input_df.withColumn('lifted', glow.lift_over_coordinates('contigName', 'start
→˓',
'end', chain_file, 0.99))

5.7. Liftover 23

https://genome.ucsc.edu/cgi-bin/hgLiftOver
https://genome.ucsc.edu/goldenPath/help/chain.html
https://genome.ucsc.edu/FAQ/FAQformat.html#format1
https://gatk.broadinstitute.org/hc/en-us/articles/360036857991-LiftoverVcf-Picard
https://gatk.broadinstitute.org/hc/en-us/articles/360035531652?id=11013
https://gatk.broadinstitute.org/hc/en-us/articles/360035531652?id=11013
https://docs.databricks.com/clusters/init-scripts.html#cluster-scoped-init-scripts

glow Documentation

5.7.3 Variant liftOver

For genetic variant data, use the lift_over_variants transformer. In addition to performing liftOver for genetic
coordinates, variant liftOver performs the following transformations:

• Reverse-complement and left-align the variant if needed

• Adjust the SNP, and correct allele-frequency-like INFO fields and the relevant genotypes if the reference and
alternate alleles have been swapped in the new genome build

Pull a target assembly reference file down to every node in the Spark cluster in addition to a chain file before performing
variant liftOver.

The lift_over_variants transformer operates on a DataFrame containing genetic variants and supports the follow-
ing options:

Parameter Default Description
chain_file n/a The path of the chain file.
reference_file n/a The path of the target reference file.
min_match_ratio .95 Minimum fraction of bases that must remap.

The output DataFrame’s schema consists of the input DataFrame’s schema with the following fields appended:

• INFO_SwappedAlleles: boolean (null if liftOver failed, true if the reference and alternate alleles were
swapped, false otherwise)

• INFO_ReverseComplementedAlleles: boolean (null if liftover failed, true if the reference and alternate al-
leles were reverse complemented, false otherwise)

• liftOverStatus: struct

– success: boolean (true if liftOver succeeded, false otherwise)

– errorMessage: string (null if liftOver succeeded, message describing reason for liftOver failure other-
wise)

If liftOver succeeds, the output row contains the liftOver result and liftOverStatus.success is true. If liftOver
fails, the output row contains the original input row, the additional INFO fields are null, liftOverStatus.success
is false, and liftOverStatus.errorMessage contains the reason liftOver failed.

output_df = glow.transform('lift_over_variants', input_df, chain_file=chain_file,␣
→˓reference_file=reference_file)

Liftover notebook

<div class='embedded-notebook'> How
to run a notebook Get notebook
link</p> <div class='embedded-notebook-container'> <div class='loading-spinner'></div> <iframe
src="../_static/notebooks/etl/lift-over.html" id='2021065844770386533' height="1000px" width="100%"
style="overflow-y:hidden;" scrolling="no"></iframe> </div> </div>

24 Chapter 5. Variant Data Manipulation

glow Documentation

5.8 Variant Normalization

Different genomic analysis tools often represent the same genomic variant in different ways, making it non-trivial to
integrate and compare variants across call sets. Therefore, variant normalization is an essential step to be applied on
variants before further downstream analysis to make sure the same variant is represented identically in different call
sets. Normalization is achieved by making sure the variant is parsimonious and left-aligned (see Variant Normalization
for more details).

Glow provides variant normalization capabilities as a DataFrame transformer as well as a SQL expression function
with a Python API, bringing unprecedented scalability to this operation.

Note: Glow’s variant normalization algorithm follows the same logic as those used in normalization tools such as
bcftools norm and vt normalize. This normalization logic is different from the one used by GATK’s LeftAlignAndTrim-
Variants, which sometimes yields incorrect normalization (see Variant Normalization for more details).

5.8.1 normalize_variants Transformer

The normalize_variants transformer can be applied to normalize a variant DataFrame, such as one generated by
loading VCF or BGEN files. The output of the transformer is described under the replace_columns option below.

5.8.2 Usage

Assuming df_original is a variable of type DataFrame which contains the genomic variant records, and
ref_genome_path is a variable of type String containing the path to the reference genome file, a minimal example of
using this transformer for normalization is as follows:

Python

Scala

df_normalized = glow.transform("normalize_variants", df_original, reference_genome_
→˓path=ref_genome_path)

df_normalized = Glow.transform("normalize_variants", df_original, Map("reference_genome_
→˓path" -> ref_genome_path))

5.8.3 Options

The normalize_variants transformer has the following options:

5.8. Variant Normalization 25

https://genome.sph.umich.edu/wiki/Variant_Normalization
https://www.htslib.org/doc/bcftools.html#norm
https://genome.sph.umich.edu/wiki/Vt#Normalization
https://gatk.broadinstitute.org/hc/en-us/articles/360037225872-LeftAlignAndTrimVariants
https://gatk.broadinstitute.org/hc/en-us/articles/360037225872-LeftAlignAndTrimVariants
https://genome.sph.umich.edu/wiki/Variant_Normalization

glow Documentation

Option Type Possible values and description
reference_genome_path string Path to the reference genome .

fasta or .fa file. This file must be
accompanied with a .fai index file
in the same folder.

replace_columns boolean

False: The transformer does not
modify the original start, end,
referenceAllele and
alternateAlleles columns.
Instead, a StructType column called
normalizationResult is added
to the DataFrame. This column
contains the normalized start,
end, referenceAllele, and
alternateAlleles columns as
well as the normalizationStatus
StructType as the fifth field, which
contains the following subfields:

changed: Indicates whether
the variant data was changed
as a result of normalization
errorMessage: An error
message in case the attempt
at normalizing the row hit an
error. In this case, the
changed field will be set to
False. If no errors occur this
field will be null. In case of
error, the first four fields in
normalizationResult will
be null.

True (default): The original start,
end, referenceAllele, and
alternateAlleles columns are
replaced with the normalized values
in case they have changed.
Otherwise (in case of no change or
an error), the original start, end,
referenceAllele, and
alternateAlleles are not
modified. A StructType
normalizationStatus column is
added to the DataFrame with the
same subfields explained above.

mode (deprecated) string

normalize: Only normalizes the
variants (if user does not pass the
option, normalize is assumed as
default)
split_and_normalize: Split
multiallelic variants to biallelic
variants and then normalize the
variants. This usage is deprecated.
Instead, use split_multiallelics
transformer followed by
normalize_variants transformer.
split: Only split the multiallelic
variants to biallelic without
normalizing. This usage is
deprecated. Instead, use
split_multiallelics transformer.

26 Chapter 5. Variant Data Manipulation

glow Documentation

5.8.4 normalize_variant Function

The normalizer can also be used as a SQL expression function. See Glow PySpark Functions for details on how to use
it in the Python API. An example of an expression using the normalize_variant function is as follows:

from pyspark.sql.functions import lit
normalization_expr = glow.normalize_variant('contigName', 'start', 'end',
→˓'referenceAllele', 'alternateAlleles', ref_genome_path)
df_normalized = df_original.withColumn('normalizationResult', normalization_expr)

Variant normalization notebook

<div class='embedded-notebook'> How
to run a notebook Get note-
book link</p> <div class='embedded-notebook-container'> <div class='loading-spinner'></div> <iframe
src="../_static/notebooks/etl/normalizevariants.html" id='-2147395502483357277' height="1000px" width="100%"
style="overflow-y:hidden;" scrolling="no"></iframe> </div> </div>

5.9 Split Multiallelic Variants

Splitting multiallelic variants to biallelic variants is a transformation sometimes required before further downstream
analysis. Glow provides the split_multiallelics transformer to be applied on a variant DataFrame to split multi-
allelic variants in the DataFrame to biallelic variants. This transformer is able to handle any number of ALT alleles and
any ploidy.

Note: The splitting logic used by the split_multiallelics transformer is the same as the one used by the vt
decompose tool of the vt package with option -s (note that the example provided at vt decompose user manual page
does not reflect the behavior of vt decompose -s completely correctly).

The precise behavior of the split_multiallelics transformer is presented below:

• A given multiallelic row with 𝑛 ALT alleles is split to 𝑛 biallelic rows, each with one of the ALT alleles of the
original multiallelic row. The REF allele in all split rows is the same as the REF allele in the multiallelic row.

• Each INFO field is appropriately split among split rows if it has the same number of elements as number of
ALT alleles, otherwise it is repeated in all split rows. The boolean INFO field splitFromMultiAllelic is
added/modified to reflect whether the new row is the result of splitting a multiallelic row through this transfor-
mation or not. A new INFO field called OLD_MULTIALLELIC is added to the DataFrame, which for each split
row, holds the CHROM:POS:REF/ALT of its original multiallelic row. Note that the INFO field must be flattened
(as explained here) in order to be split by this transformer. Unflattened INFO fields (such as those inside an
attributes field) will not be split, but just repeated in whole across all split rows.

• Genotype fields for each sample are treated as follows: The GT field becomes biallelic in each row, where the
original ALT alleles that are not present in that row are replaced with no call. The fields with number of entries
equal to number of REF + ALT alleles, are properly split into rows, where in each split row, only entries corre-
sponding to the REF allele as well as the ALT allele present in that row are kept. The fields which follow colex
order (e.g., GL, PL, and GP) are properly split between split rows where in each row only the elements corre-
sponding to genotypes comprising of the REF and ALT alleles in that row are listed. Other genotype fields are
just repeated over the split rows.

• Any other field in the DataFrame is just repeated across the split rows.

As an example (shown in VCF file format), the following multiallelic row

5.9. Split Multiallelic Variants 27

https://genome.sph.umich.edu/wiki/Vt#Decompose
https://genome.sph.umich.edu/wiki/Vt#Decompose
https://genome.sph.umich.edu/wiki/Vt#Decompose

glow Documentation

#CHROM POS ID REF ALT QUAL FILTER INFO FORMAT SAMPLE1
20 101 . A ACCA,TCGG . PASS VC=INDEL;AC=3,2;AF=0.375,
→˓0.25;AN=8 GT:AD:DP:GQ:PL 0/1:2,15,31:30:99:2407,0,533,697,822,574

will be split into the following two biallelic rows:

#CHROM POS ID REF ALT QUAL FILTER INFO FORMAT SAMPLE1
20 101 . A ACCA . PASS VC=INDEL;AC=3;AF=0.375;AN=8;OLD_
→˓MULTIALLELIC=20:101:A/ACCA/TCGG GT:AD:DP:GQ:PL 0/1:2,15:30:99:2407,0,533
20 101 . A TCGG . PASS VC=INDEL;AC=2;AF=0.25;AN=8;OLD_
→˓MULTIALLELIC=20:101:A/ACCA/TCGG GT:AD:DP:GQ:PL 0/.:2,31:30:99:2407,697,574

5.9.1 Usage

Assuming df_original is a variable of type DataFrame which contains the genomic variant records, an example of
using this transformer for splitting multiallelic variants is:

Python

Scala

df_split = glow.transform("split_multiallelics", df_original)

df_split = Glow.transform("split_multiallelics", df_original)

Tip: The split_multiallelics transformer is often significantly faster if the whole-stage code generation feature
of Spark Sql is turned off. Therefore, it is recommended that you temporarily turn off this feature using the following
command before using this transformer.

Python

Scala

spark.conf.set("spark.sql.codegen.wholeStage", False)

spark.conf.set("spark.sql.codegen.wholeStage", false)

Remember to turn this feature back on after your split DataFrame is materialized.

Split Multiallelic Variants notebook

<div class='embedded-notebook'> How to
run a notebook Get
notebook link</p> <div class='embedded-notebook-container'> <div class='loading-spinner'></div> <iframe
src="../_static/notebooks/etl/splitmultiallelics-transformer.html" id='-5455118338391792859' height="1000px"
width="100%" style="overflow-y:hidden;" scrolling="no"></iframe> </div> </div>

28 Chapter 5. Variant Data Manipulation

glow Documentation

5.10 Merging Variant Datasets

You can use Glow and Spark to merge genomic variant datasets from non-overlapping sample sets into a multi-sample
dataset. In these examples, we will read from VCF files, but the same logic works on DataFrames backed by other file
formats.

First, read the VCF files into a single Spark DataFrame:

from pyspark.sql.functions import *

df = spark.read.format('vcf').load([path1, path2])

Alternatively, you can use the "union" DataFrame method if the VCF files have the same␣
→˓schema
df1 = spark.read.format('vcf').load(path1)
df2 = spark.read.format('vcf').load(path2)
df = df1.union(df2)

The resulting DataFrame contains all records from the VCFs you want to merge, but the genotypes from different
samples at the same site have not been combined. You can use an aggregation to combine the genotype arrays.

from pyspark.sql.functions import *

merged_df = df.groupBy('contigName', 'start', 'end', 'referenceAllele', 'alternateAlleles
→˓')\
.agg(sort_array(flatten(collect_list('genotypes'))).alias('genotypes'))

Important: When reading VCF files for a merge operation, sampleId must be the first field in the genotype struct.
This is the default Glow schema.

The genotypes from different samples now appear in the same genotypes array.

Note: If the VCFs you are merging contain different sites, elements will be missing from the genotypes array after
aggregation. Glow automatically fills in missing genotypes when writing to bigvcf, so an exported VCF will still
contain all samples.

5.10.1 Aggregating INFO fields

To preserve INFO fields in a merge, you can use the aggregation functions in Spark. For instance, to emit an INFO_DP
column that is the sum of the INFO_DP columns across all samples:

from pyspark.sql.functions import *

merged_df = df.groupBy('contigName', 'start', 'end', 'referenceAllele', 'alternateAlleles
→˓')\
.agg(sort_array(flatten(collect_list('genotypes'))).alias('genotypes'),

sum('INFO_DP').alias('INFO_DP'))

5.10. Merging Variant Datasets 29

glow Documentation

5.10.2 Joint genotyping

The merge logic in this document allows you to quickly aggregate genotyping array data or single sample VCFs. For a
more sophisticated aggregation that unifies alleles at overlapping sites and uses cohort-level statistics to refine genotype
calls, we recommend running a joint genotyping pipeline.

Notebook

<div class='embedded-notebook'> How
to run a notebook Get notebook
link</p> <div class='embedded-notebook-container'> <div class='loading-spinner'></div> <iframe
src="../_static/notebooks/etl/merge-vcf.html" id='9087266656196030740' height="1000px" width="100%"
style="overflow-y:hidden;" scrolling="no"></iframe> </div> </div>

5.11 Hail Interoperation

Glow includes functionality to enable conversion between a Hail MatrixTable and a Spark DataFrame, similar to one
created with the native Glow datasources.

5.11.1 Create a Hail cluster

To use the Hail interoperation functions, you need Hail to be installed on the cluster. On a Databricks cluster, install
Hail with an environment variable. See the Hail installation documentation to install Hail in other setups.

5.11.2 Convert to a Glow DataFrame

Convert from a Hail MatrixTable to a Glow-compatible DataFrame with the function from_matrix_table.

from glow.hail import functions
df = functions.from_matrix_table(mt, include_sample_ids=True)

By default, the genotypes contain sample IDs. To remove the sample IDs, set the parameter
include_sample_ids=False.

5.11.3 Schema mapping

The Glow DataFrame variant fields are derived from the Hail MatrixTable row fields.

Required Glow DataFrame variant field Hail MatrixTable row field
Yes contigName locus.contig
Yes start locus.position - 1
Yes end info.END or locus.position - 1 + len(alleles[0])
Yes referenceAllele alleles[0]
No alternateAlleles alleles[1:]
No names [rsid, varid]
No qual qual
No filters filters
No INFO_<ANY_FIELD> info.<ANY_FIELD>

30 Chapter 5. Variant Data Manipulation

https://hail.is/docs/0.2/overview/matrix_table.html
https://docs.databricks.com/applications/genomics/tertiary/hail.html#create-a-hail-cluster
https://docs.databricks.com/applications/genomics/tertiary/hail.html#create-a-hail-cluster
https://hail.is/docs/0.2/getting_started.html

glow Documentation

The Glow DataFrame genotype sample IDs are derived from the Hail MatrixTable column fields.

All of the other Glow DataFrame genotype fields are derived from the Hail MatrixTable entry fields.

Glow DataFrame genotype field Hail MatrixTable entry field
phased GT.phased
calls GT.alleles
depth DP
filters FT
genotypeLikelihoods GL
phredLikelihoods PL
posteriorProbabilities GP
conditionalQuality GQ
haplotypeQualities HQ
expectedAlleleCounts EC
mappingQuality MQ
alleleDepths AD
<ANY_FIELD> <ANY_FIELD>

Hail interoperation notebook

<div class='embedded-notebook'> How
to run a notebook Get note-
book link</p> <div class='embedded-notebook-container'> <div class='loading-spinner'></div> <iframe
src="../_static/notebooks/etl/hail-interoperation.html" id='-8050869962612160722' height="1000px" width="100%"
style="overflow-y:hidden;" scrolling="no"></iframe> </div> </div>

5.12 Utility Functions

Glow includes a variety of utility functions for performing basic data manipulation.

5.12.1 Struct transformations

Glow’s struct transformation functions change the schema structure of the DataFrame. These transformations integrate
with functions whose parameter structs require a certain schema.

• subset_struct: subset fields from a struct

from pyspark.sql import Row
row_one = Row(Row(str_col='foo', int_col=1, bool_col=True))
row_two = Row(Row(str_col='bar', int_col=2, bool_col=False))
base_df = spark.createDataFrame([row_one, row_two], schema=['base_col'])
subsetted_df = base_df.select(glow.subset_struct('base_col', 'str_col', 'bool_col').
→˓alias('subsetted_col'))

• add_struct_fields: append fields to a struct

from pyspark.sql.functions import lit, reverse
added_df = base_df.select(glow.add_struct_fields('base_col', lit('float_col'), lit(3.14),
→˓ lit('rev_str_col'), reverse(base_df.base_col.str_col)).alias('added_col'))

5.12. Utility Functions 31

glow Documentation

• expand_struct: explode a struct into columns

expanded_df = base_df.select(glow.expand_struct('base_col'))

5.12.2 Spark ML transformations

Glow supports transformations between double arrays and Spark ML vectors for integration with machine learning
libraries such as Spark’s machine learning library (MLlib).

• array_to_dense_vector: transform from an array to a dense vector

array_df = spark.createDataFrame([Row([1.0, 2.0, 3.0]), Row([4.1, 5.1, 6.1])], schema=[
→˓'array_col'])
dense_df = array_df.select(glow.array_to_dense_vector('array_col').alias('dense_vector_
→˓col'))

• array_to_sparse_vector: transform from an array to a sparse vector

sparse_df = array_df.select(glow.array_to_sparse_vector('array_col').alias('sparse_
→˓vector_col'))

• vector_to_array: transform from a vector to a double array

from pyspark.ml.linalg import SparseVector
row_one = Row(vector_col=SparseVector(3, [0, 2], [1.0, 3.0]))
row_two = Row(vector_col=SparseVector(3, [1], [1.0]))
vector_df = spark.createDataFrame([row_one, row_two])
array_df = vector_df.select(glow.vector_to_array('vector_col').alias('array_col'))

• explode_matrix: explode a Spark ML matrix such that each row becomes an array of doubles

from pyspark.ml.linalg import DenseMatrix
matrix_df = spark.createDataFrame(Row([DenseMatrix(2, 3, range(6))]), schema=['matrix_col
→˓'])
array_df = matrix_df.select(glow.explode_matrix('matrix_col').alias('array_col'))

5.12.3 Variant data transformations

Glow supports numeric transformations on variant data for downstream calculations, such as GWAS.

• genotype_states: create a numeric representation for each sample’s genotype data. This calculates the sum
of the calls (or -1 if any calls are missing); the sum is equivalent to the number of alternate alleles for biallelic
variants.

from pyspark.sql.types import *

missing_and_hom_ref = Row([Row(calls=[-1,0]), Row(calls=[0,0])])
het_and_hom_alt = Row([Row(calls=[0,1]), Row(calls=[1,1])])
calls_schema = StructField('calls', ArrayType(IntegerType()))
genotypes_schema = StructField('genotypes_col', ArrayType(StructType([calls_schema])))
genotypes_df = spark.createDataFrame([missing_and_hom_ref, het_and_hom_alt],␣
→˓StructType([genotypes_schema]))
num_alt_alleles_df = genotypes_df.select(glow.genotype_states('genotypes_col').alias(
→˓'num_alt_alleles_col')) (continues on next page)

32 Chapter 5. Variant Data Manipulation

glow Documentation

(continued from previous page)

• hard_calls: get hard calls from genotype probabilities. These are determined based on the number of alternate
alleles for the variant, whether the probabilities are phased (true for haplotypes and false for genotypes), and a
call threshold (if not provided, this defaults to 0.9). If no calls have a probability above the threshold, the call is
set to -1.

unphased_above_threshold = Row(probabilities=[0.0, 0.0, 0.0, 1.0, 0.0, 0.0], num_alts=2,␣
→˓phased=False)
phased_below_threshold = Row(probabilities=[0.1, 0.9, 0.8, 0.2], num_alts=1, phased=True)
uncalled_df = spark.createDataFrame([unphased_above_threshold, phased_below_threshold])
hard_calls_df = uncalled_df.select(glow.hard_calls('probabilities', 'num_alts', 'phased',
→˓ 0.95).alias('calls'))

• mean_substitute: substitutes the missing values of a numeric array using the mean of the non-missing values.
Any values that are NaN, null or equal to the missing value parameter are considered missing. If all values are
missing, they are substituted with the missing value. If the missing value is not provided, this defaults to -1.

unsubstituted_row = Row(unsubstituted_values=[float('nan'), None, -1.0, 0.0, 1.0, 2.0, 3.
→˓0])
unsubstituted_df = spark.createDataFrame([unsubstituted_row])
substituted_df = unsubstituted_df.select(glow.mean_substitute('unsubstituted_values',␣
→˓lit(-1.0)).alias('substituted_values'))

5.12. Utility Functions 33

glow Documentation

34 Chapter 5. Variant Data Manipulation

CHAPTER

SIX

TERTIARY ANALYSIS

Perform population-scale statistical analyses of genetic variants.

6.1 Parallelizing Command-Line Bioinformatics Tools With the Pipe
Transformer

To use single-node tools on massive data sets, Glow includes a utility called the Pipe Transformer to process Spark
DataFrames with command-line tools.

6.1.1 Usage

Consider a minimal case with a DataFrame containing a single column of strings. You can use the Pipe Transformer
to reverse each of the strings in the input DataFrame using the rev Linux command:

Python

Scala

Provide options through the arg_map argument or as keyword args.

Create a text-only DataFrame
df = spark.createDataFrame([['foo'], ['bar'], ['baz']], ['value'])
rev_df = glow.transform('pipe', df, cmd=['rev'], input_formatter='text', output_
→˓formatter='text')

Provide options as a Map[String, Any].

Glow.transform("pipe", df, Map(
"cmd" -> Seq("grep", "-v", "#INFO"),
"inputFormatter" -> "vcf",
"outputFormatter" -> "vcf",
"inVcfHeader" -> "infer")

)

The options in this example demonstrate how to control the basic behavior of the transformer:

• cmd is a JSON-encoded array that contains the command to invoke the program

• input_formatter defines how each input row should be passed to the program

• output_formatter defines how the program output should be converted into a new DataFrame

The input DataFrame can come from any Spark data source — Delta, Parquet, VCF, BGEN, and so on.

35

glow Documentation

6.1.2 Integrating with bioinformatics tools

To integrate with tools for genomic data, you can configure the Pipe Transformer to write each partition of the input
DataFrame as VCF by choosing vcf as the input and output formatter. Here is an example using bedtools. For a
more complex example using The Variant Effect Predictor (VEP) see the notebook example below. Note that the
bioinformatics tool must be installed on each virtual machine of the Spark cluster.

df = spark.read.format("vcf").load(path)

intersection_df = glow.transform(
'pipe',
df,
cmd=['bedtools', 'intersect', '-a', 'stdin', '-b', bed, '-header', '-wa'],
input_formatter='vcf',
in_vcf_header='infer',
output_formatter='vcf'

)

You must specify a method to determine the VCF header when using the VCF input formatter. The option infer
instructs the Pipe Transformer to derive a VCF header from the DataFrame schema. Alternately, you can provide the
header as a blob, or you can point to the filesystem path for an existing VCF file with the correct header.

6.1.3 Options

Option keys and values are always strings. You can specify option names in snake or camel case; for example
inputFormatter, input_formatter, and InputFormatter are all equivalent.

Op-
tion

Description

cmd The command, specified as an array of strings, to invoke the piped program. The program’s stdin receives
the formatted contents of the input DataFrame, and the output DataFrame is constructed from its stdout.
The stderr stream will appear in the executor logs.

input_formatterConverts the input DataFrame to a format that the piped program understands. Built-in input formatters
are text, csv, and vcf.

output_formatterConverts the output of the piped program back into a DataFrame. Built-in output formatters are text,
csv, and vcf.

env_* Options beginning with env_ are interpreted as environment variables. Like other options, the
environment variable name is converted to lower snake case. For example, providing the option
env_aniMal=MONKEY results in an environment variable with key ani_mal and value MONKEY being
provided to the piped program.

Some of the input and output formatters take additional options.

36 Chapter 6. Tertiary Analysis

glow Documentation

VCF input formatter

Option Description
in_vcf_header How to determine a VCF header from the input

DataFrame. Possible values:
• infer: Derive a VCF header from the DataFrame

schema. The inference behavior matches that of
the sharded VCF writer.

• The complete contents of a VCF header starting
with ##

• A Hadoop filesystem path to a VCF file. The
header from this file is used as the VCF header
for each partition.

The CSV input and output formatters accept most of the same options as the CSV data source. You must prefix options
to the input formatter with in_, and options to the output formatter with out_. For example, in_quote sets the quote
character when writing the input DataFrame to the piped program.

The following options are not supported:

• path options are ignored

• The parserLib option is ignored. univocity is always used as the CSV parsing library.

6.1.4 Cleanup

The pipe transformer uses RDD caching to optimize performance. Spark automatically drops old data partitions in a
least-recently-used (LRU) fashion. If you would like to manually clean up the RDDs cached by the pipe transformer
instead of waiting for them to fall out of the cache, use the pipe cleanup transformer on any DataFrame. Do not perform
cleanup until the pipe transformer results have been materialized, such as by being written to a Delta Lake table.

Python

Scala

glow.transform('pipe_cleanup', df)

Glow.transform("pipe_cleanup", df)

Pipe Transformer bedtools example notebook

<div class='embedded-notebook'> How
to run a notebook Get
notebook link</p> <div class='embedded-notebook-container'> <div class='loading-spinner'></div>
<iframe src="../_static/notebooks/tertiary/pipe-transformer.html" id='3781736665242601714' height="1000px"
width="100%" style="overflow-y:hidden;" scrolling="no"></iframe> </div> </div>

6.1. Parallelizing Command-Line Bioinformatics Tools With the Pipe Transformer 37

https://delta.io

glow Documentation

Pipe Transformer Variant Effect Predictor (VEP) example notebook

<div class='embedded-notebook'> How to
run a notebook Get note-
book link</p> <div class='embedded-notebook-container'> <div class='loading-spinner'></div> <iframe
src="../_static/notebooks/tertiary/pipe-transformer-vep.html" id='8811090464416650610' height="1000px"
width="100%" style="overflow-y:hidden;" scrolling="no"></iframe> </div> </div>

6.2 Using Python Statistics Libraries

This notebook demonstrates how to use pandas user-defined functions (UDFs) to run native Python code with PySpark
when working with genomic data.

6.2.1 pandas example notebook

<div class='embedded-notebook'> How
to run a notebook Get note-
book link</p> <div class='embedded-notebook-container'> <div class='loading-spinner'></div> <iframe
src="../_static/notebooks/tertiary/pandas-lmm.html" id='3343843362444903368' height="1000px" width="100%"
style="overflow-y:hidden;" scrolling="no"></iframe> </div> </div>

6.3 GloWGR: Whole Genome Regression

Glow supports Whole Genome Regression (WGR) as GloWGR, a distributed version of the regenie method (see the
paper published in Nature Genetics). GloWGR supports two types of phenotypes:

• Quantitative

• Binary

Many steps of the GloWGR workflow explained in this page are common between the two cases. Any step that is
different between the two has separate explanations clearly marked by “for quantitative phenotypes” vs. “for binary
phenotypes”.

6.3.1 Performance

The following figure demonstrates the performance gain obtained by using parallelized GloWGR in comparision with
single machine BOLT, fastGWA GRM, and regenie for fitting WGR models against 50 quantitative phenotypes from
the UK Biobank project.

38 Chapter 6. Tertiary Analysis

https://rgcgithub.github.io/regenie/
https://www.nature.com/articles/s41588-021-00870-7

glow Documentation

6.3.2 Overview

GloWGR consists of the following stages:

• Block the genotype matrix across samples and variants

• Perform dimensionality reduction with linear ridge regression

• Estimate phenotypic predictors using

– For quantitative phenotypes: linear ridge regression

– For binary phenotypes: logistic ridge regression

The following diagram provides an overview of the operations and data within the stages of GlowWGR and their
interrelationship.

6.3. GloWGR: Whole Genome Regression 39

glow Documentation

40 Chapter 6. Tertiary Analysis

glow Documentation

6.3.3 Data preparation

GloWGR accepts three input data components.

1. Genotype data

The genotype data may be read as a Spark DataFrame from any variant data source supported by Glow, such as VCF,
BGEN or PLINK . For scalability and high-performance repeated use, we recommend storing flat genotype files into
Delta tables. The DataFrame must include a column values containing a numeric representation of each genotype.
The genotypic values may not be missing.

When loading the variants into the DataFrame, perform the following transformations:

• Split multiallelic variants with the split_multiallelics transformer.

• Create a values column by calculating the numeric representation of each genotype. This representation is typi-
cally the number of alternate alleles for biallelic variants which can be calculated with glow.genotype_states.
Replace any missing values with the mean of the non-missing values using glow.mean_substitute.

Example

from pyspark.sql.functions import col, lit

variants = spark.read.format('vcf').load(genotypes_vcf)
genotypes = variants.withColumn('values', glow.mean_substitute(glow.genotype_states(col(
→˓'genotypes'))))

2. Phenotype data

The phenotype data is represented as a Pandas DataFrame indexed by the sample ID. Phenotypes are also referred to
as labels. Each column represents a single phenotype. It is assumed that there are no missing phenotype values.

• For quantitative phenotypes: It is assumed the phenotypes are standardized with zero mean and unit (unbiased)
variance.

Example: Standardization can be performed with Pandas or scikit-learn’s StandardScaler.

import pandas as pd
label_df = pd.read_csv(continuous_phenotypes_csv, index_col='sample_id')[[
→˓'Continuous_Trait_1', 'Continuous_Trait_2']]

• For binary phenotypes: Phenotype values are either 0 or 1. No standardization is needed.

Example

import pandas as pd
label_df = pd.read_csv(binary_phenotypes_csv, index_col='sample_id')

6.3. GloWGR: Whole Genome Regression 41

https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html

glow Documentation

3. Covariate data

The covariate data is represented as a Pandas DataFrame indexed by the sample ID. Each column represents a single
covariate. It is assumed that there are no missing covariate values, and that the covariates are standardized with zero
mean and unit (unbiased) variance.

Example

covariate_df = pd.read_csv(covariates_csv, index_col='sample_id')

6.3.4 Stage 1. Genotype matrix blocking

The first stage of GloWGR is to generate the block genotype matrix. The glow.wgr.functions.
block_variants_and_samples function is used for this purpose and creates two objects: a block genotype matrix
and a sample block mapping.

Warning: We do not recommend using the split_multiallelics transformer and the
block_variants_and_samples function in the same query due to JVM JIT code size limits during whole-stage
code generation. It is best to persist the variants after splitting multiallelics to a Delta table (see Create a Genomics
Delta Lake) and then read the data from this Delta table to apply block_variants_and_samples.

Parameters

• genotypes: Genotype DataFrame including the values column generated as explained above

• sample_ids: A python List of sample IDs. Can be created by applying glow.wgr.functions.
get_sample_ids to a genotype DataFrame

• variants_per_block: Number of variants to include in each block. We recommend 1000.

• sample_block_count: Number of sample blocks to create. We recommend 10.

Return

The function returns a block genotype matrix and a sample block mapping.

• Block genotype matrix (see figure below): The block genotype matrix can be conceptually imagined
as an 𝑁 ×𝑀 matrix 𝑋 where each row represents an individual sample, and each column represents
a variant, and each cell (𝑖, 𝑗) contains the genotype value for sample 𝑖 at variant 𝑗. Then imagine a
coarse grid is laid on top of matrix 𝑋 such that matrix cells within the same coarse grid cell are all
assigned to the same block. Each block 𝑥 is indexed by a sample block ID (corresponding to a list
of rows belonging to the block) and a header block ID (corresponding to a list of columns belonging
to the block). The sample block IDs are generally just integers 0 through the number of sample
blocks. The header block IDs are strings of the form ‘chr_C_block_B’, which refers to the Bth block
on chromosome C. The Spark DataFrame representing this block matrix can be thought of as the
transpose of each block, i.e., 𝑥𝑇 , all stacked one atop another. Each row in the DataFrame represents
the values from a particular column of 𝑋 for the samples corresponding to a particular sample block.

42 Chapter 6. Tertiary Analysis

glow Documentation

The fields in the DataFrame and their content for a given row are as follows:

• sample_block: An ID assigned to the block 𝑥 containing the group of samples repre-
sented on this row

• header_block: An ID assigned to the block 𝑥 containing this header

• header: The column name in the conceptual genotype matrix 𝑋

• size: The number of individuals in the sample block

• values: Genotype values for the header in this sample block. If the matrix is sparse,
contains only non-zero values.

• position: An integer assigned to this header that specifies the correct sort order for the
headers in this block

6.3. GloWGR: Whole Genome Regression 43

glow Documentation

• mu: The mean of the genotype values for this header

• sig: The standard deviation of the genotype values for this header

Warning: Variant rows in the input DataFrame whose genotype values are uniform across
all samples are filtered from the output block genotype matrix.

• Sample block mapping: The sample block mapping is a python dictionary containing key-value
pairs, where each key is a sample block ID and each value is a list of sample IDs contained in that
sample block. The order of these IDs match the order of the values arrays in the block genotype
DataFrame.

Example

from glow.wgr import RidgeReduction, RidgeRegression, LogisticRidgeRegression, block_
→˓variants_and_samples, get_sample_ids
from pyspark.sql.functions import col, lit

variants_per_block = 1000
sample_block_count = 10
sample_ids = get_sample_ids(genotypes)
block_df, sample_blocks = block_variants_and_samples(

genotypes, sample_ids, variants_per_block, sample_block_count)

6.3.5 Stage 2. Dimensionality reduction

Having the block genotype matrix, the first stage is to apply a dimensionality reduction to the block matrix 𝑋 using the
RidgeReducer. After RidgeReducer is initialized, dimensionality reduction is accomplished within two steps:

1. Model fitting, performed by the RidgeReducer.fit function, which fits multiple ridge models within each
block 𝑥.

2. Model transformation, performed by the RidgeReducer.transform function, which produces a new block
matrix where each column represents the prediction of one ridge model applied within one block.

This approach to model building is generally referred to as stacking. We call the starting block genotype matrix the
level 0 matrix in the stack, denoted by 𝑋0, and the output of the ridge reduction step the level 1 matrix, denoted by
𝑋1. The RidgeReducer class is initialized with a list of ridge regularization values (here referred to as alpha). Since
ridge models are indexed by these alpha values, the RidgeReducer will generate one ridge model per value of alpha
provided, which in turn will produce one column per block in 𝑋0. Therefore, the final dimensions of 𝑋1 for a single
phenotype will be 𝑁 × (𝐿×𝐾), where 𝐿 is the number of header blocks in 𝑋0 and 𝐾 is the number of alpha values
provided to the RidgeReducer. In practice, we can estimate a span of alpha values in a reasonable order of magnitude
based on guesses at the heritability of the phenotype we are fitting.

44 Chapter 6. Tertiary Analysis

glow Documentation

1. Initialization

When the RidgeReducer is initialized, it assigns names to the provided alphas and stores them in a python dictionary
accessible as RidgeReducer.alphas. If alpha values are not provided, they will be generated during RidgeReducer.
fit based on the number of unique headers in the blocked genotype matrix 𝑋0, denoted by ℎ0, and a set of heritability
values. More specifically,

𝛼 = ℎ0

[︀ 1

0.99
,

1

0.75
,

1

0.50
,

1

0.25
,

1

0.01

]︀
These values are only sensible if the phenotypes are on the scale of one.

Example

reduction = RidgeReduction(block_df, label_df, sample_blocks, covariate_df)

2. Model fitting

The reduction of a block 𝑥0 from 𝑋0 to the corresponding block 𝑥1 from 𝑋1 is accomplished by the matrix multi-
plication 𝑥0𝐵 = 𝑥1, where 𝐵 is a coefficient matrix of size 𝑚 × 𝐾, where 𝑚 is the number of columns in block
𝑥0 and 𝐾 is the number of alpha values used in the reduction. As an added wrinkle, if the ridge reduction is being
performed against multiple phenotypes at once, each phenotype will have its own 𝐵, and for convenience we panel
these next to each other in the output into a single matrix, so 𝐵 in that case has dimensions 𝑚× (𝐾 × 𝑃) where 𝑃 is
the number of phenotypes. Each matrix 𝐵 is specific to a particular block in 𝑋0, so the Spark DataFrame produced by
the RidgeReducer can be thought of matrices 𝐵 from all the blocks, one stacked atop another.

Parameters

• block_df: Spark DataFrame representing the beginning block matrix

• label_df: Pandas DataFrame containing the target labels used in fitting the ridge models

• sample_blocks: Dictionary containing a mapping of sample block IDs to a list of corresponding sample IDs

• covariate_df: Pandas DataFrame containing covariates to be included in every model in the stacking ensemble
(optional)

Return

The fields in the model DataFrame are:

• header_block: An ID assigned to the block 𝑥0 to the coefficients in this row

• sample_block: An ID assigned to the block 𝑥0 containing the group of samples represented on this row

• header: The column name in the conceptual genotype matrix 𝑋0 that corresponds to a particular row in the
coefficient matrix 𝐵

• alphas: List of alpha names corresponding to the columns of 𝐵

• labels: List of labels (i.e., phenotypes) corresponding to the columns of 𝐵

• coefficients: List of the actual values from a row in 𝐵

6.3. GloWGR: Whole Genome Regression 45

glow Documentation

Example

model_df = reduction.fit()

3. Model transformation

After fitting, the RidgeReducer.transform method can be used to generate 𝑋1 from 𝑋0.

Parameters

• block_df: Spark DataFrame representing the beginning block matrix

• label_df: Pandas DataFrame containing the target labels used in fitting the ridge models

• sample_blocks: Dictionary containing a mapping of sample block IDs to a list of corresponding sample IDs

• model_df: Spark DataFrame produced by the RidgeReducer.fit function, representing the reducer model

• covariate_df: Pandas DataFrame containing covariates to be included in every model in the stacking ensemble
(optional).

Return

The output of the transformation is analogous to the block matrix DataFrame we started with. The main difference
is that, rather than representing a single block matrix, it represents multiple block matrices, with one such matrix per
label (phenotype). The schema of this block matrix DataFrame (reduced_block_df) will be as follows:

|-- header: string (nullable = true)
|-- size: integer (nullable = true)
|-- values: array (nullable = true)
| |-- element: double (containsNull = true)
|-- header_block: string (nullable = true)
|-- sample_block: string (nullable = true)
|-- sort_key: integer (nullable = true)
|-- mu: double (nullable = true)
|-- sig: double (nullable = true)
|-- alpha: string (nullable = true)
|-- label: string (nullable = true)

This schema is the same as the schema of the DataFrame we started with (block_df) with two additional columns:

• alpha: Name of the alpha value used in fitting the model that produced the values in this row

• label: The label corresponding to the values in this row. Since the genotype block matrix 𝑋0 is phenotype-
agnostic, the rows in block_df were not restricted to any label (phenotype), but the level 1 block matrix 𝑋1

represents ridge model predictions for the labels the reducer was fit with, so each row is associated with a specific
label.

The headers in the 𝑋1 block matrix are derived from a combination of the source block in 𝑋0, the alpha value used in
fitting the ridge model, and the label they were fit with. These headers are assigned to header blocks that correspond
to the chromosome of the source block in 𝑋0.

46 Chapter 6. Tertiary Analysis

glow Documentation

Example

reduced_block_df = reduction.transform()

Performing fit and transform in a single step

If the block genotype matrix, phenotype DataFrame, sample block mapping, and covariates are constant for both the
model fitting and transformation, the RidgeReducer.fit_transform function can be used to do fit and transform in
a single step

Example

reduced_block_df = reduction.fit_transform()

6.3.6 Stage 3. Estimate phenotypic predictors

At this stage, the block matrix 𝑋1 is used to fit a final predictive model that can generate phenotype predictions 𝑦 using

• For quantitative phenotypes: the RidgeRegression class.

• For binary phenotypes: the LogisticRegression class.

1. Initialization

• For quantitative phenotypes: As with the RidgeReducer class, the RidgeRegression class is initialized with
a list of alpha values. If alpha values are not provided, they will be generated during RidgeRegression.fit
based on the unique number of headers in the blocked matrix 𝑋1, denoted by ℎ1, and a set of heritability values.

𝛼 = ℎ1

[︀ 1

0.99
,

1

0.75
,

1

0.50
,

1

0.25
,

1

0.01

]︀
These values are only sensible if the phenotypes are on the scale of one.

Example

regression = RidgeRegression.from_ridge_reduction(reduction)

• For binary phenotypes: Everything is the same except that LogisticRegression class is used instead of
RidgeRegression.

Example

regression = LogisticRidgeRegression.from_ridge_reduction(reduction)

6.3. GloWGR: Whole Genome Regression 47

glow Documentation

2. Model fitting

Model fitting is performed using

• For quantitative phenotypes: the RidgeRegression.fit function.

• For binary phenotypes: the LogisticRegression.fit function.

This works much in the same way as the RidgeReducer model fitting, except that it returns an additional DataFrame
that reports the cross validation results in optimizing the hyperparameter alpha.

Parameters

• block_df: Spark DataFrame representing the reduced block matrix

• label_df: Pandas DataFrame containing the target labels used in fitting the ridge models

• sample_blocks: Dictionary containing a mapping of sample block IDs to a list of corresponding sample IDs

• covariate_df: Pandas DataFrame containing covariates to be included in every model in the stacking ensemble
(optional)

Return

The first output is a model DataFrame analogous to the model DataFrame provided by the RidgeReducer. An impor-
tant difference is that the header block ID for all rows will be ‘all’, indicating that all headers from all blocks have been
used in a single fit, rather than fitting within blocks.

The second output is a cross validation report DataFrame containing the results of the hyperparameter (i.e., alpha)
value optimization routine. The fields in this DataFrame are:

• label: This is the label corresponding to the cross cv results on the row.

• alpha: The name of the optimal alpha value

• r2_mean: The mean out of fold r2 score for the optimal alpha value

Example

Assuming regression is initialized to RidgeRegression (for quantitative phenotypes) or LogisticRegression
(for binary phenotypes) as described above, fitting will be done as follows:

model_df, cv_df = regression.fit()

3. Model transformation

After fitting the model, the model DataFrame and cross validation DataFrame are used to apply the model to the block
matrix DataFrame to produce predictions (𝑦) for each label and sample. This is done using

• For quantitative phenotypes: the RidgeRegression.transform or RidgeRegression.transform_loco
method.

• For binary phenotypes: the LogisticRegression.transform or LogisticRegression.
transform_loco method.

Here, we describe the leave-one-chromosome-out (LOCO) approach. The input and output of the transform_loco
function in RidgeRegression and LogisticRegression are as follows:

48 Chapter 6. Tertiary Analysis

glow Documentation

Parameters

• block_df: Spark DataFrame representing the reduced block matrix

• label_df: Pandas DataFrame containing the target labels used in the fitting step

• sample_blocks: Dictionary containing a mapping of sample block IDs to a list of corresponding sample IDs

• model_df: Spark DataFrame produced by the RidgeRegression.fit function (for quantitative phenotypes)
or LogisticRegression.fit function (for binary phenotypes), representing the reducer model

• cv_df: Spark DataFrame produced by the RidgeRegression.fit function (for quantitative phenotypes) or
LogisticRegression.fit function (for binary phenotypes), containing the results of the cross validation rou-
tine

• covariate_df:

– For quantitative phenotypes: Pandas DataFrame containing covariates to be included in every model in
the stacking ensemble (optional).

– For binary phenotypes:
∗ If response='linear', covariate_df should not be provided.

Tip: This is because in any follow-up GWAS analysis involving penalization, such as Firth
logistic regression, only the linear terms containing genotypes will be used as an offset and
covariate coefficients will be refit.

∗ If response='sigmoid', a Pandas DataFrame containing covariates to be included in every model
in the stacking ensemble.

• response (for binary phenotypes only): String specifying the desired output. It can be 'linear' (default) to
specify the direct output of the linear WGR model (default) or 'sigmoid' to specify predicted label probabilities.

• chromosomes: List of chromosomes for which to generate a prediction (optional). If not provided, the chromo-
somes will be inferred from the block matrix.

Return

• For quantitative phenotypes: Pandas DataFrame shaped like label_df, representing the resulting phenotypic
predictors 𝑦, indexed by the sample ID and chromosome with each column representing a single phenotype.

• For binary phenotypes:
– If response='linear': Similar to above but the phenotypic predictor captures only the terms containing

genotypes (and not covariates)

– If response='sigmoid': Pandas DataFrame with the same structure as above containing the predicted
probabilities.

6.3. GloWGR: Whole Genome Regression 49

glow Documentation

Example

Assuming regression is initialized to RidgeRegression (for quantitative phenotypes) or LogisticRegression
(for binary phenotypes) as described above, fitting will be done as follows:

For quantitative phenotypes:

y_hat_df = regression.transform_loco()

For binary phenotypes:

y_hat_df = regression.transform_loco()

6.3.7 Proceed to GWAS

GloWGR GWAS functionality can be used to perform genome-wide association study using the phenotypic predictors
to correct for polygenic effects.

6.3.8 Troubleshooting

If you encounter limits related to memory allocation in PyArrow, you may need to tune the number of alphas, number
of variants per block, and/or the number of sample blocks. The default values for these hyperparameters are tuned for
500,000 variants and 500,000 samples.

The following values must all be lower than 132,152,839:

• (# alphas) * (# variants / # variants per block) * (# samples / # sample blocks)

• (# alphas * # variants / # variants per block)^2

6.3.9 Example notebook

Two example notebooks are provided below, the first for quantitative phenotypes and the second for binary phenotypes.

GloWGR notebook for quantitative phenotypes

<div class='embedded-notebook'> How
to run a notebook Get notebook
link</p> <div class='embedded-notebook-container'> <div class='loading-spinner'></div> <iframe
src="../_static/notebooks/tertiary/glowgr.html" id='6512709445948678801' height="1000px" width="100%"
style="overflow-y:hidden;" scrolling="no"></iframe> </div> </div>

50 Chapter 6. Tertiary Analysis

glow Documentation

GloWGR notebook for binary phenotypes

<div class='embedded-notebook'> How
to run a notebook Get note-
book link</p> <div class='embedded-notebook-container'> <div class='loading-spinner'></div> <iframe
src="../_static/notebooks/tertiary/binaryglowgr.html" id='4675901922485916434' height="1000px" width="100%"
style="overflow-y:hidden;" scrolling="no"></iframe> </div> </div>

6.4 GloWGR: Genome-Wide Association Study (GWAS) Regression
Tests

Glow contains functions for performing regression analyses used in genome-wide association studies (GWAS). These
functions are best used in conjunction with the GloWGR whole genome regression method, but also work as standalone
analysis tools.

Tip: Glow automatically converts literal one-dimensional and two-dimensional numpy ndarray s of double s to
array<double> and spark.ml DenseMatrix respectively.

6.4.1 Linear regression

linear_regression performs a linear regression association test optimized for performance in a GWAS setting.
You provide a Spark DataFrame containing the genetic data and Pandas DataFrames with the phenotypes, covariates,
and optional offsets (typically predicted phenotypes from GloWGR). The function returns a Spark DataFrame with
association test results for each (variant, phenotype) pair.

Each worker node in the cluster tests a subset of the total variant dataset. Multiple phenotypes and variants are tested
together to take advantage of efficient matrix-matrix linear algebra primitives.

Example

import glow
import numpy as np
import pandas as pd
from pyspark.sql import Row
from pyspark.sql.functions import col, lit

Read in VCF file
variants = spark.read.format('vcf').load(genotypes_vcf)

genotype_states returns the number of alt alleles for each sample
mean_substitute replaces any missing genotype states with the mean of the non-missing␣
→˓states
genotypes = (glow.transform('split_multiallelics', variants)

.withColumn('gt', glow.mean_substitute(glow.genotype_states(col('genotypes'))))

.select('contigName', 'start', 'names', 'gt')

.cache())

Read covariates from a CSV file
(continues on next page)

6.4. GloWGR: Genome-Wide Association Study (GWAS) Regression Tests 51

glow Documentation

(continued from previous page)

covariates = pd.read_csv(covariates_csv, index_col=0)

Read phenotypes from a CSV file
continuous_phenotypes = pd.read_csv(continuous_phenotypes_csv, index_col=0)

Run linear regression test
lin_reg_df = glow.gwas.linear_regression(genotypes, continuous_phenotypes, covariates,␣
→˓values_column='gt')

For complete parameter usage information, check out the API reference for glow.gwas.linear_regression().

Note: Glow also includes a SQL-based function for performing linear regression. However, this function only pro-
cesses one phenotype at time, and so performs more slowly than the batch linear regression function documented above.
To read more about the SQL-based function, see the docs for glow.linear_regression_gwas().

6.4.2 Logistic regression

logistic_regression performs a logistic regression hypothesis test optimized for performance in a GWAS setting.

Example

import glow
import numpy as np
import pandas as pd
from pyspark.sql import Row
from pyspark.sql.functions import col, lit

Read in VCF file
variants = spark.read.format('vcf').load(genotypes_vcf)

genotype_states returns the number of alt alleles for each sample
mean_substitute replaces any missing genotype states with the mean of the non-missing␣
→˓states
genotypes = (glow.transform('split_multiallelics', variants)

.withColumn('gt', glow.mean_substitute(glow.genotype_states(col('genotypes'))))

.select('contigName', 'start', 'names', 'gt')

.cache())

Read covariates from a CSV file
covariates = pd.read_csv(covariates_csv, index_col=0)

Read phenotypes from a CSV file
binary_phenotypes = pd.read_csv(binary_phenotypes_csv, index_col=0)

Run logistic regression test with approximate Firth correction for p-values below 0.05
log_reg_df = glow.gwas.logistic_regression(
genotypes,
binary_phenotypes,
covariates,

(continues on next page)

52 Chapter 6. Tertiary Analysis

glow Documentation

(continued from previous page)

correction='approx-firth',
pvalue_threshold=0.05,
values_column='gt'

)

For complete parameter usage information, check out the API reference for glow.gwas.logistic_regression().

Note: Glow also includes a SQL-based function for performing logistic regression. However, this function only
processes one phenotype at time, and so performs more slowly than the batch logistic regression function documented
above. To read more about the SQL-based function, see the docs for glow.logistic_regression_gwas().

6.4.3 Offset

The linear and logistic regression functions accept GloWGR phenotypic predictions (either global or per chromosome)
as an offset.

continuous_offsets = pd.read_csv(continuous_offset_csv, index_col=0)
lin_reg_df = glow.gwas.linear_regression(
genotypes,
continuous_phenotypes,
covariates,
offset_df=continuous_offsets,
values_column='gt'

)

binary_offsets = pd.read_csv(binary_offset_csv, index_col=0)
log_reg_df = glow.gwas.logistic_regression(
genotypes,
binary_phenotypes,
covariates,
offset_df=binary_offsets,
correction='approx-firth',
pvalue_threshold=0.05,
values_column='gt'

)

Tip: The offset parameter is especially useful in incorporating the results of GloWGR with phenotypes in GWAS.
Please refer to GloWGR: Whole Genome Regression for details and example notebook.

6.4. GloWGR: Genome-Wide Association Study (GWAS) Regression Tests 53

glow Documentation

Example notebooks and blog post

GloWGR: GWAS for quantitative traits

<div class='embedded-notebook'> How
to run a notebook Get
notebook link</p> <div class='embedded-notebook-container'> <div class='loading-spinner'></div>
<iframe src="../_static/notebooks/tertiary/gwas-quantitative.html" id='-4276729361968649801' height="1000px"
width="100%" style="overflow-y:hidden;" scrolling="no"></iframe> </div> </div>

GloWGR: GWAS for binary traits

<div class='embedded-notebook'> How
to run a notebook Get note-
book link</p> <div class='embedded-notebook-container'> <div class='loading-spinner'></div> <iframe
src="../_static/notebooks/tertiary/gwas-binary.html" id='-6949832139886066259' height="1000px" width="100%"
style="overflow-y:hidden;" scrolling="no"></iframe> </div> </div>

A detailed example and explanation of a GWAS workflow is available here.

GWAS with MLflow instrumentation

<div class='embedded-notebook'> How
to run a notebook Get notebook
link</p> <div class='embedded-notebook-container'> <div class='loading-spinner'></div> <iframe
src="../_static/notebooks/tertiary/gwas.html" id='8686534826584212456' height="1000px" width="100%"
style="overflow-y:hidden;" scrolling="no"></iframe> </div> </div>

54 Chapter 6. Tertiary Analysis

https://databricks.com/blog/2019/09/20/engineering-population-scale-genome-wide-association-studies-with-apache-spark-delta-lake-and-mlflow.html

CHAPTER

SEVEN

TROUBLESHOOTING

• Job is slow or OOMs (throws an OutOfMemoryError) while using an aggregate like collect_list or
sample_call_summary_stats

– Try disabling the ObjectHashAggregate by setting spark.sql.execution.
useObjectHashAggregateExec to false

• Job is slow or OOMs while writing to partitioned table

– This error can occur when reading from highly compressed files. Try decreasing spark.files.
maxPartitionBytes to a smaller value like 33554432 (32MB)

• My VCF looks weird after merging VCFs and saving with bigvcf

– When saving to a VCF, the samples in the genotypes array must be in the same order for each row. This
ordering is not guaranteed when using collect_list to join multiple VCFs. Try sorting the array using
sort_array.

• Glow’s behavior changed after a release

– See the Glow release notes. If the Glow release involved a Spark version change, see the Spark migration
guide.

55

https://github.com/apache/spark/commit/27daf6bcde782ed3e0f0d951c90c8040fd47e985
https://github.com/projectglow/glow/releases
https://spark.apache.org/docs/latest/migration-guide.html
https://spark.apache.org/docs/latest/migration-guide.html

glow Documentation

56 Chapter 7. Troubleshooting

CHAPTER

EIGHT

CONTRIBUTING

Glow began as an industry collaboration between databricks and the Regeneron Genetics Center. Glow enables scien-
tists and engineers work together to solve genomics problems with data.

Contributing is easy, and we will collaborate with you to extend the project.

The sections below detail how to contribute.

8.1 Raise Issues

If you get stuck or hit errors when using glow, please raise an issue. Even if you solve the problem, there’s a good
chance someone else will encounter it.

Important: Please raise issues!

8.2 Join the monthly office hours

Monthly office hours provide an opportunity keep up to date with new developments with Glow. Please send an email
to glow [dot] contributors [at] gmail.com to join.

8.3 Contribute to the codebase

To contribute to glow, please fork the library and create a branch. Make your changes and create a pull request. It’s
easy to get started.

Important: Please sign off all commits!

git commit -m "initial commit" --signoff

57

https://github.com/projectglow/glow/issues

glow Documentation

8.3.1 1. Modify or add notebooks

As you work through the example notebooks in the docs, please document issues. If you solve problems or improve
code, please help contribute changes back. That way others will benefit and become more productive.

Export your notebook as html into the relevant directory under docs/source/_static/notebooks.

And run this python script (swapping the html file out for your own).

python3 docs/dev/gen-nb-src.py --html docs/source/_static/notebooks/tertiary/pipe-
→˓transformer-vep.html

8.3.2 2. Improve the documentation

If you add a notebook, please reference it in the documentation. Either to an existing docs page, or create a new one.
Other contributions to the docs include,

• Tips for glow

– Spark cluster configuration and tuning

– glow use cases

• Troubleshooting guides and gotchas

• Fix typos, hyperlinks or paths

• Better explanations of

– what code snippets in the docs mean?

– what cells in notebooks mean?

• Unit tests for notebook code

• New use cases

To build the docs locally,

first create the conda environment:

conda env create -f source/environment.yml

activate the glow docs conda environment:

conda activate glow-docs

build the docs:

make livehtml

connect to the local server via your browser at: http://127.0.0.1:8000

58 Chapter 8. Contributing

glow Documentation

8.3.3 3. Add libraries to the glow docker environment

Please edit glow docker files to add libraries that integrate with glow. Only include libraries that are used directly
upstream or downstream of glow, or used with the glow pipe transformer.

1. Setup a dockerhub account

2. Edit the genomics docker file on your fork

• This file contains command line tools, Python and R packages

3. Build and push the container

• Use this bash script as a template

4. Test the container in your environment in a notebook

5. Once you are happy with the container and the test, open a pull request

• We will build and push the container to the official projectglow dockerhub

• Point to this container in the glow nightly continuous integration test jobs definition

• Once the circle-ci continuous integration test passes, we will incorporate it into the project

8.3.4 4. Contribute new features / bug fixes

Here are example pull requests for new features or bug fixes that touch different aspects of the codebase,

• Scala

• Python functions

• Python & R notebooks

• Data schemas

• Docker

• Benchmarks

Much of the codebase is in Scala, however we are increasingly moving to Python. Near-term focus is around integrating
with Delta streaming and sharing. In the future we will optimize code in C++.

8.3. Contribute to the codebase 59

https://github.com/projectglow/glow/blob/master/docker/README.md
https://github.com/projectglow/glow/blob/master/docker/databricks/dbr/dbr9.1/genomics/Dockerfile
https://github.com/projectglow/glow/blob/master/docker/databricks/build.sh
https://hub.docker.com/u/projectglow
https://github.com/projectglow/glow/tree/master/docs/dev
https://github.com/projectglow/glow/pull/418
https://github.com/projectglow/glow/pull/416
https://github.com/projectglow/glow/pull/431
https://github.com/projectglow/glow/pull/402
https://github.com/projectglow/glow/pull/420
https://github.com/projectglow/glow/pull/440

glow Documentation

60 Chapter 8. Contributing

CHAPTER

NINE

BLOG POSTS

9.1 Introducing GloWGR: An industrial-scale, ultra-fast and sensitive
method for genetic association studies

Authors: Leland Barnard, Henry Davidge, Karen Feng, Joelle Mbatchou, Boris Boutkov, Kiavash Kianfar, Lukas
Habegger, Jonathan Marchini, Jeffrey Reid, Evan Maxwell, Frank Austin Nothaft

June 22, 2020

The industry partnership between Regeneron and Databricks is enabling innovations in genomics data processing and
analysis. Today, we announce that we are making a new whole genome regression method available to the open source
bioinformatics community as part of Project Glow.

Large cohorts of individuals with paired clinical and genome sequence data enable unprecedented insight into human
disease biology. Population studies such as the UK Biobank, Genomics England, or Genome Asia 100k datasets
are driving a need for innovation in methods for working with genetic data. These methods include genome wide
association studies (GWAS), which enrich our understanding of the genetic architecture of the disease and are used
in cutting-edge industrial applications, such as identifying therapeutic targets for drug development. However, these
datasets pose novel statistical and engineering challenges. The statistical challenges have been addressed by tools such
as SAIGE and Bolt-LMM, but they are difficult to set up and prohibitively slow to run on biobank-scale datasets.

In a typical GWAS, a single phenotype such as cholesterol levels or diabetes diagnosis status is tested for statisti-
cal association with millions of genetic variants across the genome. Sophisticated mixed model and whole genome
regression-based approaches have been developed to control for relatedness and population structure inherent to large
genetic study populations when testing for genetic associations; several methods such as BOLT-LMM, SAIGE, and
fastGWA use a technique called whole genome regression to sensitively analyze a single phenotype in biobank-scale
projects. However, deeply phenotyped biobank-scale projects can require tens of thousands of separate GWASs to
analyze the full spectrum of clinical variables, and current tools are still prohibitively expensive to run at scale. In
order to address the challenge of efficiently analyzing such datasets, the Regeneron Genetics Center has just developed
a new approach for the whole-genome regression method that enables running GWAS across upwards of hundreds of
phenotypes simultaneously. This exciting new tool provides the same superior test power as current state-of-the-art
methods at a small fraction of the computational cost.

This new whole genome regression (WGR) approach recasts the whole genome regression problem to an ensemble
model of many small, genetic region-specific models. This method is described in a preprint released today, and im-
plemented in the C++ tool regenie. As part of the collaboration between the Regeneron Genetics Center and Databricks
on the open source Project Glow, we are excited to announce GloWGR, a lightning-fast and highly scalable distributed
implementation of this WGR algorithm, designed from the ground up with Apache Spark and integrated with other
Glow functionality. With GloWGR, performing WGR analyses on dozens of phenotypes can be accomplished simul-
taneously in a matter of minutes, a task that would require hundreds or thousands of hours with existing state-of-the-art
tools. Moreover, GloWGR distributes along both the sample and genetic variant matrix dimensions, allowing for linear
scaling and a high degree of data and task parallelism. GloWGR plugs seamlessly into any existing GWAS workflow,
providing an immediate boost to association detection power at a negligible computational cost.

61

https://github.com/LelandBarnard
https://github.com/henrydavidge
https://github.com/karenfeng
https://github.com/joellesophya
https://github.com/bboutkov
https://github.com/kianfar77
https://github.com/habeggel
https://github.com/habeggel
https://github.com/jmarchini
https://github.com/jgreid
https://github.com/emaxwell
https://github.com/fnothaft
https://www.ukbiobank.ac.uk/
https://www.genomicsengland.co.uk/
https://genomeasia100k.org/
https://www.biorxiv.org/content/10.1101/2020.06.02.129908v1
https://www.nature.com/articles/ng.3190
https://www.nature.com/articles/s41588-018-0184-y/
https://www.nature.com/articles/s41588-019-0530-8
https://www.biorxiv.org/content/10.1101/2020.06.19.162354v1
https://rgcgithub.github.io/regenie/
http://projectglow.io

glow Documentation

9.1.1 Achieving High Accuracy and Efficiency with Whole-Genome Regression

This whole genome regression tool has a number of virtues. First, it is more efficient: as implemented in the single
node, open-source regenie tool, whole genome regression is orders of magnitude faster than either SAIGE, Bolt-LMM,
or fastGWA, while producing equivalent results (Figure 1). Second, it is straightforward to parallelize: in the next
section, we describe how we implemented whole genome regression using Apache Spark™ in the open-source Project
Glow.

Fig. 9.1: Comparison of GWAS results for three quantitative phenotypes from the UK Biobank project, produced by
REGENIE, BOLT-LMM, and fastGWA.

In addition to performance considerations, the whole genome regression approach produces covariates that are com-
patible with standard GWAS methods, and which eliminate spurious associations caused by population structure that
are seen with traditional approaches. The Manhattan plots in figure 2 below compare the results of a traditional linear
regression GWAS using standard covariates, to a linear regression GWAS using the covariates generated by WGR. This
flexibility of GloWGR is another tremendous advantage over existing GWAS tools, and will allow for a wide variety
of exciting extensions to the association testing framework that is already available in Glow.

Figure 3 shows performance comparisons between GloWGR, REGENIE, BoltLMM, and fastGWA. We benchmarked
the whole genome regression test implemented in Glow against the C++ implementation available in the single-node
regenie tool to validate the accuracy of the method. We found that the two approaches achieve statistically identical
results. We also found that the Apache Spark™ based implementation in Glow scales linearly with the number of nodes
used.

9.1.2 Scaling Whole Genome Regression within Project Glow

Performing WGR analysis with GloWGR has 5 steps:

• Dividing the genotype matrix into contiguous blocks of SNPs (~1000 SNPs per block, referred to as loci)

• Fitting multiple ridge models (~10) with varying ridge penalties within each locus

• Using the resulting ridge models to reduce the locus from a matrix of 1,000 features to 10 features (each feature
is the prediction of one of the ridge models)

• Pooling the resulting features of all loci into a new reduced feature matrix X (N individuals by L loci x J ridge
models per locus)

62 Chapter 9. Blog Posts

https://rgcgithub.github.io/regenie/
https://rgcgithub.github.io/regenie/
http://projectglow.io
http://projectglow.io
https://rgcgithub.github.io/regenie/
https://rgcgithub.github.io/regenie/

glow Documentation

Fig. 9.2: Comparison of GWAS results of the quantitative phenotype bilirubin from the UK Biobank project, evaluated
using standard linear regression and linear regression with GloWGR. The heightened peaks in the highlighted regions
show the increase in power to detect subtler associations that is gained with GloWGR.

Fig. 9.3: Left: end-to-end GWAS runtime comparison for 50 quantitative traits from the UK Biobank project. Right:
Run time comparison to fit WGR models against 50 quantitative phenotypes from the UK Biobank project. GloWGR
scales well with cluster size, allowing for modeling of dozens of phenotypes in minutes without costing additional CPU
efficiency. The exact list of phenotypes and computation environment details can be found here.

9.1. Introducing GloWGR: An industrial-scale, ultra-fast and sensitive method for genetic
association studies

63

https://www.biorxiv.org/content/10.1101/2020.06.19.162354v1

glow Documentation

• Fitting a final regularized model from X for the genome-wide contribution to phenotype Y.

Glow provides the easy-to-use abstractions shown in figure 4 for transforming large genotype matrices into the blocked
matrix (below, left) and then fitting the whole genome regression model (below, right). These can be applied to data
loaded in any of the genotype file formats that Glow understands, including VCF, Plink, and BGEN formats, as well as
genotype data stored in Apache Spark™ native file formats like Delta Lake.

Fig. 9.4: Creating a matrix grouped by locus and fitting mixed ridge regression models using GloWGR

Glow provides an implementation of the WGR method for quantitative traits, and a binary trait variant is in progress.
The covariate-adjusted phenotype created by GloWGR can be written out as an Apache Parquet ™ or Delta Lake
dataset, which can easily be loaded by and analyzed within Apache Spark, pandas, and other tools. Ultimately, using
the covariates computed with WGR in a genome-wide association study is as simple as running the command shown
in Figure 5, below. This command is run by Apache Spark™, in parallel, across all of the genetic markers under test.

Fig. 9.5: Updating phenotypes with the WGR results and running a GWAS using the built-in association test methods
from Glow

9.1.3 Join us and try whole genome regression in Glow!

Whole genome regression is available in Glow, which is an open source project hosted on Github, with an Apache
2 license. You can get started with this notebook that shows how to use GloWGR on data from 1,000 Genomes, by
reading the preprint, by reading our project docs, or you can create a fork of the repository to start contributing code
today.

64 Chapter 9. Blog Posts

https://glow.readthedocs.io/en/latest/etl/variant-data.html
https://delta.io/
http://parquet.apache.org
https://delta.io/
http://spark.apache.org
https://pandas.pydata.org/
https://glow.readthedocs.io/en/latest/tertiary/regression-tests.html
https://glow.readthedocs.io/en/latest/tertiary/regression-tests.html
http://projectglow.io
https://github.com/projectglow/glow
https://glow.readthedocs.io/en/latest/tertiary/whole-genome-regression.html
https://www.biorxiv.org/content/10.1101/2020.06.19.162354v1
http://projectglow.io
https://github.com/projectglow/glow/fork

glow Documentation

9.2 Glow 0.4 Enables Integration of Genomic Variant and Annotation
Data

Author: Kiavash Kianfar
June 9, 2020

Glow 0.4 was released on May 20, 2020. This blog focuses on the highlight of this release, the newly introduced
capability to ingest genomic annotation data from the GFF3 (Generic Feature Format Version 3) flat file format. This
release also includes other feature and usability improvements, which will be briefly reviewed at the end of this blog.

GFF3 is a sequence annotation flat file format proposed by the Sequence Ontology Project in 2013, which since has
become the de facto format for genome annotation and is widely used by genome browsers and databases such as NCBI
RefSeq and GenBank. GFF3, a 9-column tab-separated text format, typically carries the majority of the annotation
data in the ninth column, called attributes, as a semi-colon-separated list of <tag>=<value> entries. As a result,
although GFF3 files can be read as Spark DataFrames using Spark SQL’s standard csv data source, the schema of the
resulting DataFrame would be quite unwieldy for query and data manipulation of annotation data, because the whole
list of attribute tag-value pairs for each sequence will appear as a single semi-colon-separated string in the attributes
column of the DataFrame.

Glow 0.4 adds the new and flexible gff Spark SQL data source to address this challenge and create a smooth GFF3
ingest and query experience. While reading the GFF3 file, the gff data source parses the attributes column of
the file to create an appropriately typed column for each tag. In each row, this column will contain the value corre-
sponding to that tag in that row (or null if the tag does not appear in the row). Consequently, all tags in the GFF3
attributes column will have their own corresponding column in the Spark DataFrame, making annotation data query
and manipulation much easier.

9.2.1 Ingesting GFF3 Annotation Data

Like any other Spark data source, reading GFF3 files using Glow’s gff data source can be done in a single line of code.
As an example, we can ingest the annotations of the Homo Sapiens genome assembly GRCh38.p13 from a GFF3 file
(obtained from RefSeq ftp site) as shown below. Here, we have also filtered the annotations to chromosome 22 in order
to use the resulting annotations_df DataFrame (Fig. 9.6) in continuation of our example. The annotations_df
alias is for the same purpose as well.

import glow
spark = glow.register(spark)

gff_path = '/databricks-datasets/genomics/gffs/GCF_000001405.39_GRCh38.p13_genomic.gff.
→˓bgz'

annotations_df = spark.read.format('gff').load(gff_path) \
.filter("seqid = 'NC_000022.11'") \
.alias('annotations_df')

In addition to reading uncompressed .gff files, the gff data source supports all compression formats supported by
Spark’s csv data source, including .gz and .bgz. It is strongly recommended to use splittable compression formats
like .bgz instead of .gz for better parallelization of the read process.

9.2. Glow 0.4 Enables Integration of Genomic Variant and Annotation Data 65

https://github.com/kianfar77
https://github.com/The-Sequence-Ontology/Specifications/blob/master/gff3.md
https://github.com/The-Sequence-Ontology/Specifications/blob/master/gff3.md
http://www.sequenceontology.org/
https://www.ncbi.nlm.nih.gov/refseq/
https://www.ncbi.nlm.nih.gov/genbank/
https://github.com/The-Sequence-Ontology/Specifications/blob/master/gff3.md
https://ftp.ncbi.nlm.nih.gov/genomes/refseq/vertebrate_mammalian/Homo_sapiens/reference/GCF_000001405.39_GRCh38.p13/

glow Documentation

Fig. 9.6: A small section of the annotations_df DataFrame

9.2.2 Schema

Let us have a closer look at the schema of the resulting DataFrame, which was automatically inferred by Glow’s gff
data source:

annotations_df.printSchema()

root
|-- seqId: string (nullable = true)
|-- source: string (nullable = true)
|-- type: string (nullable = true)
|-- start: long (nullable = true)
|-- end: long (nullable = true)
|-- score: double (nullable = true)
|-- strand: string (nullable = true)
|-- phase: integer (nullable = true)
|-- ID: string (nullable = true)
|-- Name: string (nullable = true)
|-- Parent: array (nullable = true)
| |-- element: string (containsNull = true)
|-- Target: string (nullable = true)
|-- Gap: string (nullable = true)
|-- Note: array (nullable = true)
| |-- element: string (containsNull = true)
|-- Dbxref: array (nullable = true)
| |-- element: string (containsNull = true)
|-- Is_circular: boolean (nullable = true)
|-- align_id: string (nullable = true)
|-- allele: string (nullable = true)
.
.
.
|-- transl_table: string (nullable = true)
|-- weighted_identity: string (nullable = true)

This schema has 100 fields (not all shown here). The first eight fields (seqId, source, type, start, end, score,
strand, and phase), here referred to as the “base” fields, correspond to the first eight columns of the GFF3 format
cast in the proper data types. The rest of the fields in the inferred schema are the result of parsing the attributes

66 Chapter 9. Blog Posts

https://github.com/The-Sequence-Ontology/Specifications/blob/master/gff3.md

glow Documentation

column of the GFF3 file. Fields corresponding to any “official” tag (those referred to as “tags with pre-defined meaning”
in the GFF3 format description), if present in the GFF3 file, come first in appropriate data types. The official fields are
followed by the “unofficial” fields (fields corresponding to any other tag) in alphabetical order. In the example above,
ID, Name, Parent, Target, Gap, Note, Dbxref, and Is_circular are the official fields, and the rest are the unofficial
fields. The gff data source discards the comments, directives, and FASTA lines that may be in the GFF3 file.

As it is not uncommon for the official tags to be spelled differently in terms of letter case and underscore usage across
different GFF3 files, or even within a single GFF3 file, the gff data source is designed to be insensitive to letter case
and underscore in extracting official tags from the attributes field. For example, the official tag Dbxref will be
correctly extracted as an official field even if it appears as dbxref or dbx_ref in the GFF3 file. Please see Glow
documentation for more details.

Like other Spark SQL data sources, Glow’s gff data source is also able to accept a user-specified schema through the
.schema command. The data source behavior in this case is also designed to be quite flexible. More specifically, the
fields (and their types) in the user-specified schema are treated as the list of fields, whether base, official, or unofficial,
to be extracted from the GFF3 file (and cast to the specified types). Please see the Glow documentation for more details
on how user-specified schemas can be used.

9.2.3 Example: Gene Transcripts and Transcript Exons

With the annotation tags extracted as individual DataFrame columns using Glow’s gff data source, query and data
preparation over genetic annotations becomes as easy as writing common Spark SQL commands in the user’s API of
choice. As an example, here we demonstrate how simple queries can be used to extract data regarding hierarchical
grouping of genomic features from the annotations_df created above.

One of the main advantages of the GFF3 format compared to older versions of GFF is the improved presentation of
feature hierarchies (see GFF3 format description for more details). Two examples of such hierarchies are:

• Transcripts of a gene (here, gene is the “parent” feature and its transcripts are the “children” features).

• Exons of a transcript (here, the transcript is the parent and its exons are the children).

In the GFF3 format, the parents of the feature in each row are identified by the value of the parent tag in the
attributes column, which includes the ID(s) of the parent(s) of the row. Glow’s gff data source extracts this infor-
mation as an array of parent ID(s) in a column of the resulting DataFrame called parent.

Assume we would like to create a DataFrame, called gene_transcript_df, which, for each gene on chromosome
22, provides some basic information about the gene and all its transcripts. As each row in the annotations_df of our
example has at most a single parent, the parent_child_df DataFrame created by the following query will help us in
achieving our goal. This query joins annotations_df with a subset of its own columns on the parent column as the
key. Fig. 9.7 shows a small section of parent_child_df.

from pyspark.sql.functions import *

parent_child_df = annotations_df \
.join(
annotations_df.select('id', 'type', 'name', 'start', 'end').alias('parent_df'),
col('annotations_df.parent')[0] == col('parent_df.id') # each row in annotation_df has␣

→˓at most one parent
) \
.orderBy('annotations_df.start', 'annotations_df.end') \
.select(
'annotations_df.seqid',
'annotations_df.type',
'annotations_df.start',
'annotations_df.end',

(continues on next page)

9.2. Glow 0.4 Enables Integration of Genomic Variant and Annotation Data 67

https://github.com/The-Sequence-Ontology/Specifications/blob/master/gff3.md
https://glow.readthedocs.io/en/latest/etl/gff.html
https://glow.readthedocs.io/en/latest/etl/gff.html
https://glow.readthedocs.io/en/latest/etl/gff.html
https://github.com/The-Sequence-Ontology/Specifications/blob/master/gff3.md
https://github.com/The-Sequence-Ontology/Specifications/blob/master/gff3.md

glow Documentation

(continued from previous page)

'annotations_df.id',
'annotations_df.name',
col('annotations_df.parent')[0].alias('parent_id'),
col('parent_df.Name').alias('parent_name'),
col('parent_df.type').alias('parent_type'),
col('parent_df.start').alias('parent_start'),
col('parent_df.end').alias('parent_end')

) \
.alias('parent_child_df')

Fig. 9.7: A small section of the parent_child_df DataFrame

Having the parent_child_df DataFrame, we can now write the following simple function, called
parent_child_summary, which, given this DataFrame, the parent type, and the child type, generates a DataFrame
containing basic information on each parent of the given type and all its children of the given type.

from pyspark.sql.dataframe import *

def parent_child_summary(parent_child_df: DataFrame, parent_type: str, child_type: str) -
→˓> DataFrame:
return parent_child_df \
.select(
'seqid',
col('parent_id').alias(f'{parent_type}_id'),
col('parent_name').alias(f'{parent_type}_name'),
col('parent_start').alias(f'{parent_type}_start'),
col('parent_end').alias(f'{parent_type}_end'),
col('id').alias(f'{child_type}_id'),
col('start').alias(f'{child_type}_start'),
col('end').alias(f'{child_type}_end'),

) \
.where(f"type == '{child_type}' and parent_type == '{parent_type}'") \
.groupBy(
'seqid',
f'{parent_type}_id',
f'{parent_type}_name',
f'{parent_type}_start',
f'{parent_type}_end'

) \
.agg(

(continues on next page)

68 Chapter 9. Blog Posts

glow Documentation

(continued from previous page)

collect_list(
struct(
f'{child_type}_id',
f'{child_type}_start',
f'{child_type}_end'

)
).alias(f'{child_type}s')

) \
.orderBy(
f'{parent_type}_start',
f'{parent_type}_end'

) \
.alias(f'{parent_type}_{child_type}_df')

Now we can generate our intended gene_transcript_df DataFrame, shown in Fig. 9.8, with a single call to this
function:

gene_transcript_df = parent_child_summary(parent_child_df, 'gene', 'transcript')

Fig. 9.8: A small section of the gene_transcript_df DataFrame

In each row of this DataFrame, the transcripts column contains the ID, start and end of all transcripts of the gene
in that row as an array of structs.

The same function can now be used to generate any parent-child feature summary. For example, we can generate
the information of all exons of each transcript on chromosome 22 with another call to the parent_child_summary
function as shown below. Fig. 9.9 shows the generated transcript_exon_df DataFrame.

transcript_exon_df = parent_child_summary(parent_child_df, 'transcript', 'exon')

Fig. 9.9: A small section of the transcript_exon_df DataFrame

9.2. Glow 0.4 Enables Integration of Genomic Variant and Annotation Data 69

glow Documentation

9.2.4 Example Continued: Integration with Variant Data

Glow has data sources to ingest variant data from common flat file formats such as VCF, BGEN, and PLINK. Com-
bining the power of Glow’s variant data sources with the new gff data source, the users can now seamlessly annotate
their variant DataFrames by joining them with annotation DataFrames in any desired fashion.

As an example, let us load the chromosome 22 variants of the 1000 Genome Project (on genome assembly GRCh38)
from a VCF file (obtained from the project’s ftp site). Fig. 9.10 shows the resulting variants_df.

vcf_path = "/databricks-datasets/genomics/1kg-vcfs/ALL.chr22.shapeit2_integrated_
→˓snvindels_v2a_27022019.GRCh38.phased.vcf.gz"

variants_df = spark.read \
.format("vcf") \
.load(vcf_path) \
.alias('variants_df')

Fig. 9.10: A small section of the variants_df DataFrame

Now using the following double-join query, we can create a DataFrame which, for each variant on a gene on chromo-
some 22, provides the information of the variant as well as the exon, transcript, and gene on which the variant resides
(Fig. 9.11). Note that the first two exploded DataFrames can also be constructed directly from parent_child_df.
Here, since we had already defined gene_transcrip_df and transcript_exon_df, we generated these exploded
DataFrames simply by applying the explode function followed by Glow’s expand_struct function on them.

from glow.functions import *

gene_transcript_exploded_df = gene_transcript_df \
.withColumn('transcripts', explode('transcripts')) \
.withColumn('transcripts', expand_struct('transcripts')) \
.alias('gene_transcript_exploded_df')

transcript_exon_exploded_df = transcript_exon_df \
.withColumn('exons', explode('exons')) \
.withColumn('exons', expand_struct('exons')) \
.alias('transcript_exon_exploded_df')

variant_exon_transcript_gene_df = variants_df \
.join(
transcript_exon_exploded_df,
(variants_df.start < transcript_exon_exploded_df.exon_end) &
(transcript_exon_exploded_df.exon_start < variants_df.end)

) \
.join(
gene_transcript_exploded_df,

(continues on next page)

70 Chapter 9. Blog Posts

http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/data_collections/1000_genomes_project/release/20190312_biallelic_SNV_and_INDEL/

glow Documentation

(continued from previous page)

transcript_exon_exploded_df.transcript_id == gene_transcript_exploded_df.transcript_id
) \
.select(
col('variants_df.contigName').alias('variant_contig'),
col('variants_df.start').alias('variant_start'),
col('variants_df.end').alias('variant_end'),
col('variants_df.referenceAllele'),
col('variants_df.alternateAlleles'),
'transcript_exon_exploded_df.exon_id',
'transcript_exon_exploded_df.exon_start',
'transcript_exon_exploded_df.exon_end',
'transcript_exon_exploded_df.transcript_id',
'transcript_exon_exploded_df.transcript_name',
'transcript_exon_exploded_df.transcript_start',
'transcript_exon_exploded_df.transcript_end',
'gene_transcript_exploded_df.gene_id',
'gene_transcript_exploded_df.gene_name',
'gene_transcript_exploded_df.gene_start',
'gene_transcript_exploded_df.gene_end'

) \
.orderBy(
'variant_contig',
'variant_start',
'variant_end'

)

Fig. 9.11: A small section of the variant_exon_transcript_gene_df DataFrame

9.2. Glow 0.4 Enables Integration of Genomic Variant and Annotation Data 71

glow Documentation

9.2.5 Other Features and Improvements

In addition to the new gff reader, Glow 0.4 introduced other features and improvements. A new function, called
mean_substitute, was introduced, which can be used to substitute the missing values of a numeric Spark array
with the mean of the non-missing values. The normalize_variants transformer now accepts reference genomes in
bgzipped fasta format in addition to the uncompressed fasta. The VCF reader was updated to be able to handle reading
file globs that include tabix index files. In addition, this reader no longer has the splitToBiallelic option. The
split_multiallelics transformer introduced in Glow 0.3 can be used instead. Also, the pipe transformer was
improved so that it does not pipe empty partitions. As a result, users do not need to repartition or coalesce when
piping VCF files. For a complete list of new features and improvements in Glow 0.4, please refer to Glow 0.4 Release
Notes.

9.2.6 Try It!

Try Glow 0.4 and its new features here.

9.3 Glow 0.3.0 Introduces Several New Large-Scale Genomic Analysis
Features

Author: Kiavash Kianfar
March 2, 2020

Glow 0.3.0 was released on February 21, 2020, improving Glow’s power and ease of use in performing large-scale
genomic analysis. In this blog, we highlight features and improvements introduced in this release.

9.3.1 Python and Scala APIs for Glow SQL functions

In this release, Python and Scala APIs were introduced for all Glow SQL functions, similar to what is available for Spark
SQL functions. In addition to improved simplicity, this provides enhanced compile-time safety. The SQL functions
and their Python and Scala clients are generated from the same source so any new functionality in the future will
always appear in all three languages. Please refer to PySpark Functions for more information on Python APIs for these
functions. As an example, the usage of such Python and Scala APIs for the function normalize_variant is presented
at the end of next section.

9.3.2 Improved variant normalization

The variant normalizer received a major improvement in this release. It still behaves like bcftools norm and vt normal-
ize, but is about 2.5x faster and has a more flexible API. Moreover, the new normalizer is implemented as a function
in addition to a transformer.

normalize_variants transformer: The improved transformer preserves the columns of the input DataFrame,
adds the normalization status to the DataFrame, and has the option of adding the normalization results (including
the normalized coordinates and alleles) to the DataFrame as a new column. As an example, assume we read the
original_variants_df DataFrame shown in Fig. 9.12 by issuing the following command:

original_variants_df = spark.read \
.format("vcf") \

(continues on next page)

72 Chapter 9. Blog Posts

https://github.com/projectglow/glow/releases
https://github.com/projectglow/glow/releases
https://projectglow.io/
https://github.com/kianfar77
https://www.htslib.org/doc/bcftools.html#norm
https://genome.sph.umich.edu/wiki/Vt#Normalization
https://genome.sph.umich.edu/wiki/Vt#Normalization

glow Documentation

(continued from previous page)

.option("includeSampleIds", False) \

.load("/databricks-datasets/genomics/call-sets")

Fig. 9.12: The variant DataFrame original_variants_df

The improved normalizer transformer can be applied on this DataFrame using the following command similar to the
previous version of the normalizer:

import glow
normalized_variants_df = glow.transform("normalize_variants", \
original_variants_df, \
reference_genome_path="/mnt/dbnucleus/dbgenomics/grch38/data/GRCh38_full_analysis_set_

→˓plus_decoy_hla.fa" \
)

Fig. 9.13: The normalized DataFrame normalized_variants_df

The output DataFrame of this improved transformer looks like Fig. 9.13. The start, end, referenceAllele, and
alternateAlleles fields are updated with the normalized values and a normalizationStatus column is added to
the DataFrame. This column contains a changed subfield indicating whether normalization changed the variant and
an errorMessage subfield containing the error message in case of an error.

The newly introduced replace_columns option can be used to add the normalization results as a new column to the

9.3. Glow 0.3.0 Introduces Several New Large-Scale Genomic Analysis Features 73

glow Documentation

DataFrame instead of replacing the original start, end, referenceAllele, and alternateAlleles fields. This
can be done as follows:

import glow
normalized_variants_df = glow.transform("normalize_variants",\
original_variants_df, \
replace_columns="False", \
reference_genome_path="/mnt/dbnucleus/dbgenomics/grch38/data/GRCh38_full_analysis_set_

→˓plus_decoy_hla.fa" \
)

Fig. 9.14: The normalized DataFrame normalized_noreplace_variants_df with normalization results added as
a new column

The resulting DataFrame will be as shown in Fig. 9.14, where a normalizationResults column containing the
normalized start, end, referenceAllele, alternateAlleles, and normalizationStatus subfields is added to
the DataFrame.

We also note that since the multiallelic variant splitter is implemented as a separate transformer in this release (see
below), the mode option of the normalize_variants transformer is deprecated. Refer to Variant Normalization for
more details on the normalize_variants transformer.

normalize_variant function: As mentioned above, in this release, variant normalization can also be performed
using the newly introduced normalize_variant SQL expression function as shown below:

from pyspark.sql.functions import expr
function_normalized_variants_df = original_variants_df.withColumn(\
"normalizationResult", \
expr("normalize_variant(contigName, start, end, referenceAllele, alternateAlleles, '/

→˓mnt/dbnucleus/dbgenomics/grch38/data/GRCh38_full_analysis_set_plus_decoy_hla.fa')") \
)

As discussed in the previous section, this SQL expression function, like any other in Glow, now has Python and Scala
APIs as well. Therefore, the same can be done in Python as follows:

from glow.functions import normalize_variant
function_normalized_variants_df = original_variants_df.withColumn(\
"normalizationResult", \
normalize_variant(\
"contigName", \

(continues on next page)

74 Chapter 9. Blog Posts

glow Documentation

(continued from previous page)

"start", \
"end", \
"referenceAllele", \
"alternateAlleles", \
"/mnt/dbnucleus/dbgenomics/grch38/data/GRCh38_full_analysis_set_plus_decoy_hla.fa" \

) \
)

and in Scala as well, assuming original_variant_df is defined in Scala:

import io.projectglow.functions.normalize_variant
import org.apache.spark.sql.functions.col
val function_normalized_variants_df = original_variants_df.withColumn(
"normalizationResult",
normalize_variant(
col("contigName"),
col("start"),
col("end"),
col("referenceAllele"),
col("alternateAlleles"),
"/mnt/dbnucleus/dbgenomics/grch38/data/GRCh38_full_analysis_set_plus_decoy_hla.fa"

)
)

The result of any of the above commands will be the same as Fig. 9.14.

9.3.3 A new transformer to split multiallelic variants

This release also introduced a new DataFrame transformer, called split_multiallelics, to split multiallelic vari-
ants into biallelic ones with a behavior similar to vt decompose with -s option. This behavior is significantly more
powerful than the behavior of the previous version’s splitter which behaved like GATK’s LeftAlignAndTrimVariants
with --split-multi-allelics. In particular, the array-type INFO and genotype fields with elements corresponding
to reference and alternate alleles are split “smart”ly (see -s option of vt decompose) into biallelic rows. So are the
array-type genotype fields with elements sorted in colex order of genotype calles, e.g., the GL, PL, and GP fields in the
VCF format. Moreover, an OLD_MULTIALLELIC INFO field is added to the DataFrame to store the original multiallelic
form of the split variants.

The following is an example of using the split_multiallelic transformer on the original_variants_df. The
resulting DataFrame is as in Fig. 9.15.

import glow
split_variants_df = glow.transform("split_multiallelics", original_variants_df)

Please note that the new splitter is implemented as a separate transformer from the normalize_variants transformer.
Previously, splitting could only be done as one of the operation modes of the normalize_variants transformer using
the now-deprecated mode option.

Please refer to the documentation of the split_multiallelics transformer for complete details on the bahavior of this new
transformer.

9.3. Glow 0.3.0 Introduces Several New Large-Scale Genomic Analysis Features 75

https://genome.sph.umich.edu/wiki/Vt#Decompose
https://gatk.broadinstitute.org/hc/en-us/articles/360037225872-LeftAlignAndTrimVariants
https://genome.sph.umich.edu/wiki/Vt#Decompose

glow Documentation

Fig. 9.15: The split DataFrame split_variants_df

9.3.4 Parsing of Annotation Fields

The VCF reader and pipe transformer now parse variant annotations from tools such as SnpEff and VEP. This flattens
the ANN and CSQ INFO fields, simplifying and accelerating queries on annotations. See the following query and its
result in Fig. 9.16 for an example.

from pyspark.sql.functions import expr
variants_df = spark.read\
.format("vcf")\
.load("dbfs:/databricks-datasets/genomics/vcfs/loftee.vcf")

annotated_variants_df = original_variants_df.withColumn(\
"Exploded_INFO_CSQ", \
expr("explode(INFO_CSQ)") \

) \
.selectExpr("contigName", \

"start", \
"end", \
"referenceAllele", \
"alternateAlleles", \
"expand_struct(Exploded_INFO_CSQ)", \
"genotypes" \

)

Fig. 9.16: The annotated DataFrame annotated_variants_df with expanded subfields of the exploded INFO_CSQ

76 Chapter 9. Blog Posts

http://snpeff.sourceforge.net/index.html
https://www.ensembl.org/info/docs/tools/vep/index.html

glow Documentation

9.3.5 Other Improvements

Glow 0.3.0 also includes optimized implementations of the linear and logistic regression functions, resulting in ~50%
performance improvements. See the documentation at Linear regression and Logistic regression.

Furthermore, the new release supports Scala 2.12 in addition to Scala 2.11. The maven artifacts for both Scala versions
are available on Maven Central.

9.3.6 Try It!

Try Glow 0.3.0 and its new features here.

9.4 Streamlining Variant Normalization on Large Genomic Datasets

Author: Kiavash Kianfar
November 20, 2019

Many research and drug development projects in the genomics world involve large genomic variant data sets, the vol-
ume of which has been growing exponentially over the past decade. However, the tools to extract, transform, load
(ETL) and analyze these data sets have not kept pace with this growth. Single-node command line tools or scripts are
very inefficient in handling terabytes of genomics data in these projects. In October of this year, Databricks and the
Regeneron Genetics Center partnered to introduce the open-source project Glow, which provides powerful genomics
tools based on Apache Spark in order to address this issue.

In large cross-team research or drug discovery projects, computational biologists and bioinformaticians usually need
to merge very large variant call sets in order to perform downstream analyses. In a prior post, we showcased the
power and simplicity of Glow in ETL and merging of variant call sets from different sources using Glow’s VCF and
BGEN Data Sources at unprecedented scales. Differently sourced variant call sets impose another major challenge. It
is not uncommon for these sets to be generated by different variant calling tools and methods. Consequently, the same
genomic variant may be represented differently (in terms of genomic position and alleles) across different call sets.
These discrepancies in variant representation must be resolved before any further analysis on the data. This is critical
for the following reasons:

1. To avoid incorrect bias in the results of downstream analysis on the merged set of variants or waste of analysis
effort on seemingly new variants due to lack of normalization, which are in fact redundant (see Tan et al. for
examples of this redundancy in 1000 Genome Project variant calls and dbSNP)

2. To ensure that the merged data set and its post-analysis derivations are compatible and comparable with other
public and private variant databases.

This is achieved by what is referred to as variant normalization, a process that ensures the same variant is represented
identically across different data sets. Performing variant normalization on terabytes of variant data in large projects
using popular single-node tools can become quite a challenge as the acceptable input and output of these tools are
the flat file formats that are commonly used to store variant calls (such as VCF and BGEN). To address this issue, we
introduced the variant normalization transformation into Glow, which directly acts on a Spark Dataframe of variants to
generate a DataFrame of normalized variants, harnessing the power of Spark to normalize variants from hundreds of
thousands of samples in a fast and scalable manner with just a single line of Python or Scala code. Before addressing
our normalizer, let us have a slightly more technical look at what variant normalization actually does.

9.4. Streamlining Variant Normalization on Large Genomic Datasets 77

https://search.maven.org/search?q=g:io.projectglow
https://projectglow.io/
https://github.com/kianfar77
https://databricks.com/
https://www.regeneron.com/genetics-center
https://projectglow.io/
https://databricks.com/blog/2019/06/26/scaling-genomic-workflows-with-spark-sql-bgen-and-vcf-readers.html

glow Documentation

9.4.1 What does variant normalization do?

Variant normalization ensures that the representation of a variant is both “parsimonious” and “left-aligned.” A variant
is parsimonious if it is represented in as few nucleotides as possible without reducing the length of any allele to zero.
An example is given in Fig. 9.17.

Fig. 9.17: Variant parsimony

A variant is left-aligned if its position cannot be shifted to the left while keeping the length of all its alleles the same.
An example is given in Fig. 9.18.

Fig. 9.18: Left-aligned variant

Tan et al. have proved that normalization results in uniqueness. In other words, two variants have different normalized
representations if and only if they are actually different variants.

9.4.2 Variant normalization in Glow

We have introduced the normalize_variants transformer into Glow (Fig. 9.19). After ingesting variant calls into
a Spark DataFrame using the VCF, BGEN or Delta readers, a user can call a single line of Python or Scala code
to normalize all variants. This generates another DataFrame in which all variants are presented in their normalized
form. The normalized DataFrame can then be used for downstream analyses like a GWAS using our built-in regression
functions or an efficiently-parallelized GWAS tool.

The normalize_variants transformer brings unprecedented scalability and simplicity to this important upstream
process, hence is yet another reason why Glow and Databricks UAP for Genomics are ideal platforms for biobank-

78 Chapter 9. Blog Posts

https://databricks.com/blog/2019/09/20/engineering-population-scale-genome-wide-association-studies-with-apache-spark-delta-lake-and-mlflow.html
https://databricks.com/blog/2019/09/20/engineering-population-scale-genome-wide-association-studies-with-apache-spark-delta-lake-and-mlflow.html
https://databricks.com/blog/2019/10/02/parallelizing-saige-across-hundreds-of-cores.html

glow Documentation

Fig. 9.19: Scalable Variant Normalization Using Glow

scale genomic analyses, e.g., association studies between genetic variations and diseases across cohorts of hundreds of
thousands of individuals.

9.4.3 The underlying normalization algorithm and its accuracy

There are several single-node tools for variant normalization that use different normalization algorithms. Widely used
tools for variant normalization include vt normalize, bcftools norm, and the GATK’s LeftAlignAndTrimVariants.

Based on our own investigation and also as indicated by Bayat et al. and Tan et al., the GATK’s LeftAlignAndTrim-
Variants algorithm frequently fails to completely left-align some variants. For example, we noticed that on the
test_left_align_hg38.vcf test file from GATK itself, applying LeftAlignAndTrimVariants results in an incorrect nor-
malization of 3 of the 16 variants in the file, including the variants at positions chr20:63669973, chr20:64012187,
and chr21:13255301. These variants are normalized correctly using vt normalize and bcftools norm.

Consequently, in our normalize_variants transformer, we used an improved version of the bcftools norm or vt
normalize algorithms, which are similar in fundamentals. For a given variant, we start by right-trimming all the
alleles of the variant as long as their rightmost nucleotides are the same. If the length of any allele reaches zero, we
left-append it with a fixed block of nucleotides from the reference genome (the nucleotides are added in blocks as
opposed to one-by-one to limit the number of referrals to the reference genome). When right-trimming is terminated,
a potential left-trimming is performed to eliminate the leftmost nucleotides common to all alleles (possibly generated
by prior left-appendings). The start, end, and alleles of the variants are updated appropriately during this process.

We benchmarked the accuracy of our normalization algorithm against vt normalize and bcftools norm on multi-
ple test files and validated that our results match the results of these tools.

9.4. Streamlining Variant Normalization on Large Genomic Datasets 79

https://genome.sph.umich.edu/wiki/Vt
https://www.htslib.org/doc/bcftools.html#norm
https://gatk.broadinstitute.org/hc/en-us/articles/360037225872-LeftAlignAndTrimVariants
https://github.com/broadinstitute/gatk/tree/master/src/test/resources/org/broadinstitute/hellbender/tools/walkers/variantutils/LeftAlignAndTrimVariants

glow Documentation

9.4.4 Optional splitting

Our normalize_variants transformer can optionally split multiallelic variants to biallelics. This is controlled by the
mode option that can be supplied to this transformer. The possible values for the mode option are as follows: normalize
(default), which performs normalization only, split_and_normalize, which splits multiallelic variants to biallelic
ones before performing normalization, and split, which only splits multiallelics without doing any normalization.

The splitting logic of our transformer is the same as the splitting logic followed by GATK’s LeftAlignAndTrimVariants
tool using --splitMultiallelics option. More precisely, in case of splitting multiallelic variants loaded from VCF
files, this transformer recalculates the GT blocks for the resulting biallelic variants if possible, and drops all INFO
fields, except for AC, AN, and AF. These three fields are imputed based on the newly calculated GT blocks, if any exists,
otherwise, these fields are dropped as well.

9.4.5 Using the transformer

Here, we briefly demonstrate how using Glow very large variant call sets can be normalized and/or split. First, VCF
and/or BGEN files can be read into a Spark DataFrame as demonstrated in a prior post. This is shown in Python for
the set of VCF files contained in a folder named /databricks-datasets/genomics/call-sets:

original_variants_df = spark.read\
.format("vcf")\
.option("includeSampleIds", False)\
.load("/databricks-datasets/genomics/call-sets")

An example of the DataFrame original_variants_df is shown in Fig. 9.20.

Fig. 9.20: The variant DataFrame original_variants_df

The variants can then be normalized using the normalize_variants transformer as follows:

import glow

ref_genome_path = '/mnt/dbnucleus/dbgenomics/grch38/data/GRCh38.fa'

normalized_variants_df = glow.transform(\
"normalize_variants",\
original_variants_df,\

(continues on next page)

80 Chapter 9. Blog Posts

https://gatk.broadinstitute.org/hc/en-us/articles/360037225872-LeftAlignAndTrimVariants
https://databricks.com/blog/2019/06/26/scaling-genomic-workflows-with-spark-sql-bgen-and-vcf-readers.html

glow Documentation

(continued from previous page)

reference_genome_path=ref_genome_path\
)

Note that normalization requires the reference genome .fasta or .fa file, which is provided using the
reference_genome_path option. The .dict and .fai files must accompany the reference genome file in the same
folder (read more about these file formats here).

Our example Dataframe after normalization can be seen in Fig. 9.21.

Fig. 9.21: The normalized_variants_df DataFrame obtained after applying normalize_variants transformer
on original_variants_df. Notice that several variants are normalized and their start, end, and alleles have changed
accordingly.

By default, the transformer normalizes each variant without splitting the multiallelic variants before normalization as
seen in Fig. 9.21. By setting the mode option to split_and_normalize, nothing changes for biallelic variants, but
the multiallelic variants are first split to the appropriate number of biallelics and the resulting biallelics are normalized.
This can be done as follows:

split_and_normalized_variants_df = glow.transform(\
"normalize_variants",\
original_variants_df,\
reference_genome_path=ref_genome_path,\
mode=“split_and_normalize”

)

The resulting DataFrame looks like Fig. 9.22.

As mentioned before, the transformer can also be used only for splitting of multiallelics without doing any normalization
by setting the mode option to split.

9.4. Streamlining Variant Normalization on Large Genomic Datasets 81

https://gatk.broadinstitute.org/hc/en-us/articles/360035531652?id=11013

glow Documentation

Fig. 9.22: The split_and_normalized_variants_df DataFrame after applying normalize_variants transformer
with mode=split_and_normalize on original_variants_df. Notice that for example the triallelic variant
chr20,start=19883344,end=19883345,REF=T,ALT=[TT,C] of original_variants_df has been split into
two biallelic variants and then normalized resulting in two normalized biallelic variants chr20,start=19883336,
end=19883337,REF=C,ALT=CT and chr20,start=19883344,end=19883345,REF=T,ALT=C.

9.4.6 Summary

Using Glow normalize_variants transformer, computational biologists and bioinformaticians can normalize very
large variant datasets of hundreds of thousands of samples in a fast and scalable manner. Differently sourced call sets
can be ingested and merged using VCF and/or BGEN readers, normalization can be performed using this transformer
in a just a single line of code. The transformer can optionally perform splitting of multiallelic variants to biallelics as
well.

9.4.7 Try it!

Our normalize_variants transformer makes it easy to normalize (and split) large variant datasets with a very small
amount of code . Learn more about other feature of Glow here.

9.4.8 References

Arash Bayat, Bruno Gaëta, Aleksandar Ignjatovic, Sri Parameswaran, Improved VCF normalization for accurate VCF
comparison, Bioinformatics, Volume 33, Issue 7, 2017, Pages 964–970

Adrian Tan, Gonçalo R. Abecasis, Hyun Min Kang, Unified representation of genetic variants, Bioinformatics, Volume
31, Issue 13, 2015, Pages 2202–2204

82 Chapter 9. Blog Posts

https://glow.readthedocs.io/en/latest/etl/variant-normalization.html
https://glow.readthedocs.io/en/latest/index.html
https://academic.oup.com/bioinformatics/article/33/7/964/2623048
https://academic.oup.com/bioinformatics/article/33/7/964/2623048
https://academic.oup.com/bioinformatics/article/31/13/2202/196142

CHAPTER

TEN

ADDITIONAL RESOURCES

10.1 Databricks notebooks

Most of the code in the Databricks notebooks can be run on Spark and Glow alone, but some functions are only available
on Databricks.

10.1.1 New to Databricks? Try Glow on Databricks for Free!

The Databricks Community Edition is free of charge. Follow our instructions to set up a Databricks Community Edition
workspace and try the Glow documentation notebooks.

10.2 External blog posts

• Scaling Genomic Workflows with Spark SQL BGEN and VCF Readers

• Parallelizing SAIGE Across Hundreds of Cores

– Parallelize SAIGE using Glow and the Pipe Transformer

• Accurately Building Genomic Cohorts at Scale with Delta Lake and Spark SQL

– Joint genotyping with Glow and Databricks

• Introducing Glow: an open-source toolkit for large-scale genomic analysis

83

https://databricks.com/product/faq/community-edition
https://databricks.com/blog/2019/06/26/scaling-genomic-workflows-with-spark-sql-bgen-and-vcf-readers.html
https://databricks.com/blog/2019/10/02/parallelizing-saige-across-hundreds-of-cores.html
https://databricks.com/blog/2019/06/19/accurately-building-genomic-cohorts-at-scale-with-delta-lake-and-spark-sql.html
https://databricks.com/blog/2019/10/18/introducing-glow-an-open-source-toolkit-for-large-scale-genomic-analysis.html

glow Documentation

84 Chapter 10. Additional Resources

CHAPTER

ELEVEN

PYTHON API

Glow’s Python API is designed to work seamlessly with PySpark and other tools in the Spark ecosystem. The functions
here work with normal PySpark DataFrames and columns. You can access functions in any module from the top-level
glow import.

11.1 Glow Top-Level Functions

glow.register(session, new_session=True)
Register SQL extensions and py4j converters for a Spark session.

Parameters
• session (SparkSession) – Spark session

• new_session (bool) – If True, create a new Spark session using session.newSession()
before registering extensions. This may be necessary if you’re using functions that register
new analysis rules. The new session has isolated UDFs, configurations, and temporary tables,
but shares the existing SparkContext and cached data.

Example

>>> import glow
>>> spark = glow.register(spark)

Return type SparkSession

glow.transform(operation, df, arg_map=None, **kwargs)
Apply a named transformation to a DataFrame of genomic data. All parameters apart from the input data and its
schema are provided through the case-insensitive options map.

There are no bounds on what a transformer may do. For instance, it’s legal for a transformer to materialize the
input DataFrame.

Parameters
• operation (str) – Name of the operation to perform

• df (DataFrame) – The input DataFrame

• arg_map (Optional[Dict[str, Any]]) – A string -> any map of arguments

• kwargs (Any) – Named arguments. If the arg_map is not specified, transformer args will be
pulled from these keyword args.

85

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Any

glow Documentation

Example

>>> df = spark.read.format('vcf').load('test-data/1kg_sample.vcf')
>>> piped_df = glow.transform('pipe', df, cmd=["cat"], input_formatter='vcf',␣
→˓output_formatter='vcf', in_vcf_header='infer')

Return type DataFrame

Returns The transformed DataFrame

11.2 PySpark Functions

Glow includes a number of functions that operate on PySpark columns. These functions are interoperable with functions
provided by PySpark or other libraries.

glow.add_struct_fields(struct, *fields)
Adds fields to a struct.

Added in version 0.3.0.

Examples

>>> df = spark.createDataFrame([Row(struct=Row(a=1))])
>>> df.select(glow.add_struct_fields('struct', lit('b'), lit(2)).alias('struct')).
→˓collect()
[Row(struct=Row(a=1, b=2))]

Parameters
• struct (Union[Column, str]) – The struct to which fields will be added

• fields (Union[Column, str]) – The new fields to add. The arguments must alternate be-
tween string-typed literal field names and field values.

Return type Column

Returns A struct consisting of the input struct and the added fields

glow.array_summary_stats(arr)
Computes the minimum, maximum, mean, standard deviation for an array of numerics.

Added in version 0.3.0.

Examples

>>> df = spark.createDataFrame([Row(arr=[1, 2, 3])])
>>> df.select(glow.expand_struct(glow.array_summary_stats('arr'))).collect()
[Row(mean=2.0, stdDev=1.0, min=1.0, max=3.0)]

Parameters arr (Union[Column, str]) – An array of any numeric type

Return type Column

86 Chapter 11. Python API

https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str

glow Documentation

Returns A struct containing double mean, stdDev, min, and max fields

glow.array_to_dense_vector(arr)
Converts an array of numerics into a spark.ml DenseVector.

Added in version 0.3.0.

Examples

>>> from pyspark.ml.linalg import DenseVector
>>> df = spark.createDataFrame([Row(arr=[1, 2, 3])])
>>> df.select(glow.array_to_dense_vector('arr').alias('v')).collect()
[Row(v=DenseVector([1.0, 2.0, 3.0]))]

Parameters arr (Union[Column, str]) – The array of numerics

Return type Column

Returns A spark.ml DenseVector

glow.array_to_sparse_vector(arr)
Converts an array of numerics into a spark.ml SparseVector.

Added in version 0.3.0.

Examples

>>> from pyspark.ml.linalg import SparseVector
>>> df = spark.createDataFrame([Row(arr=[1, 0, 2, 0, 3, 0])])
>>> df.select(glow.array_to_sparse_vector('arr').alias('v')).collect()
[Row(v=SparseVector(6, {0: 1.0, 2: 2.0, 4: 3.0}))]

Parameters arr (Union[Column, str]) – The array of numerics

Return type Column

Returns A spark.ml SparseVector

glow.call_summary_stats(genotypes)
Computes call summary statistics for an array of genotype structs. See Variant Quality Control for more details.

Added in version 0.3.0.

Examples

>>> schema = 'genotypes: array<struct<calls: array<int>>>'
>>> df = spark.createDataFrame([Row(genotypes=[Row(calls=[0, 0]), Row(calls=[1, 0]),
→˓ Row(calls=[1, 1])])], schema)
>>> df.select(glow.expand_struct(glow.call_summary_stats('genotypes'))).collect()
[Row(callRate=1.0, nCalled=3, nUncalled=0, nHet=1, nHomozygous=[1, 1], nNonRef=2,␣
→˓nAllelesCalled=6, alleleCounts=[3, 3], alleleFrequencies=[0.5, 0.5])]

Parameters genotypes (Union[Column, str]) – The array of genotype structs with calls field

11.2. PySpark Functions 87

https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str

glow Documentation

Return type Column

Returns A struct containing callRate, nCalled, nUncalled, nHet, nHomozygous, nNonRef,
nAllelesCalled, alleleCounts, alleleFrequencies fields. See Variant Quality Control.

glow.dp_summary_stats(genotypes)
Computes summary statistics for the depth field from an array of genotype structs. See Variant Quality Control.

Added in version 0.3.0.

Examples

>>> df = spark.createDataFrame([Row(genotypes=[Row(depth=1), Row(depth=2),␣
→˓Row(depth=3)])], 'genotypes: array<struct<depth: int>>')
>>> df.select(glow.expand_struct(glow.dp_summary_stats('genotypes'))).collect()
[Row(mean=2.0, stdDev=1.0, min=1.0, max=3.0)]

Parameters genotypes (Union[Column, str]) – An array of genotype structs with depth field

Return type Column

Returns A struct containing mean, stdDev, min, and max of genotype depths

glow.expand_struct(struct)
Promotes fields of a nested struct to top-level columns similar to using struct.* from SQL, but can be used in
more contexts.

Added in version 0.3.0.

Examples

>>> df = spark.createDataFrame([Row(struct=Row(a=1, b=2))])
>>> df.select(glow.expand_struct(col('struct'))).collect()
[Row(a=1, b=2)]

Parameters struct (Union[Column, str]) – The struct to expand

Return type Column

Returns Columns corresponding to fields of the input struct

glow.explode_matrix(matrix)
Explodes a spark.ml Matrix (sparse or dense) into multiple arrays, one per row of the matrix.

Added in version 0.3.0.

88 Chapter 11. Python API

https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str

glow Documentation

Examples

>>> from pyspark.ml.linalg import DenseMatrix
>>> m = DenseMatrix(numRows=3, numCols=2, values=[1, 2, 3, 4, 5, 6])
>>> df = spark.createDataFrame([Row(matrix=m)])
>>> df.select(glow.explode_matrix('matrix').alias('row')).collect()
[Row(row=[1.0, 4.0]), Row(row=[2.0, 5.0]), Row(row=[3.0, 6.0])]

Parameters matrix (Union[Column, str]) – The sparl.ml Matrix to explode

Return type Column

Returns An array column in which each row is a row of the input matrix

glow.genotype_states(genotypes)
Gets the number of alternate alleles for an array of genotype structs. Returns -1 if there are any -1 s (no-calls)
in the calls array.

Added in version 0.3.0.

Examples

>>> genotypes = [
... Row(calls=[1, 1]),
... Row(calls=[1, 0]),
... Row(calls=[0, 0]),
... Row(calls=[-1, -1])]
>>> df = spark.createDataFrame([Row(genotypes=genotypes)], 'genotypes: array<struct
→˓<calls: array<int>>>')
>>> df.select(glow.genotype_states('genotypes').alias('states')).collect()
[Row(states=[2, 1, 0, -1])]

Parameters genotypes (Union[Column, str]) – An array of genotype structs with calls field

Return type Column

Returns An array of integers containing the number of alternate alleles in each call array

glow.gq_summary_stats(genotypes)
Computes summary statistics about the genotype quality field for an array of genotype structs. See Variant
Quality Control.

Added in version 0.3.0.

Examples

>>> genotypes = [
... Row(conditionalQuality=1),
... Row(conditionalQuality=2),
... Row(conditionalQuality=3)]
>>> df = spark.createDataFrame([Row(genotypes=genotypes)], 'genotypes: array<struct
→˓<conditionalQuality: int>>')

(continues on next page)

11.2. PySpark Functions 89

https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str

glow Documentation

(continued from previous page)

>>> df.select(glow.expand_struct(glow.gq_summary_stats('genotypes'))).collect()
[Row(mean=2.0, stdDev=1.0, min=1.0, max=3.0)]

Parameters genotypes (Union[Column, str]) – The array of genotype structs with
conditionalQuality field

Return type Column

Returns A struct containing mean, stdDev, min, and max of genotype qualities

glow.hard_calls(probabilities, numAlts, phased, threshold=None)
Converts an array of probabilities to hard calls. The probabilities are assumed to be diploid. See Variant data
transformations for more details.

Added in version 0.3.0.

Examples

>>> df = spark.createDataFrame([Row(probs=[0.95, 0.05, 0.0])])
>>> df.select(glow.hard_calls('probs', numAlts=lit(1), phased=lit(False)).alias(
→˓'calls')).collect()
[Row(calls=[0, 0])]
>>> df = spark.createDataFrame([Row(probs=[0.05, 0.95, 0.0])])
>>> df.select(glow.hard_calls('probs', numAlts=lit(1), phased=lit(False)).alias(
→˓'calls')).collect()
[Row(calls=[0, 1])]
>>> # Use the threshold parameter to change the minimum probability required for a␣
→˓call
>>> df = spark.createDataFrame([Row(probs=[0.05, 0.95, 0.0])])
>>> df.select(glow.hard_calls('probs', numAlts=lit(1), phased=lit(False),␣
→˓threshold=0.99).alias('calls')).collect()
[Row(calls=[-1, -1])]

Parameters
• probabilities (Union[Column, str]) – The array of probabilities to convert

• numAlts (Union[Column, str]) – The number of alternate alleles

• phased (Union[Column, str]) – Whether the probabilities are phased. If phased, we expect
one 2 * numAlts values in the probabilities array. If unphased, we expect one probability
per possible genotype.

• threshold (Optional[float]) – The minimum probability to make a call. If no probability
falls into the range of [0, 1 - threshold] or [threshold, 1], a no-call (represented
by -1 s) will be emitted. If not provided, this parameter defaults to 0.9.

Return type Column

Returns An array of hard calls

glow.hardy_weinberg(genotypes)
Computes statistics relating to the Hardy Weinberg equilibrium. See Variant Quality Control for more details.

Added in version 0.3.0.

90 Chapter 11. Python API

https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#float

glow Documentation

Examples

>>> genotypes = [
... Row(calls=[1, 1]),
... Row(calls=[1, 0]),
... Row(calls=[0, 0])]
>>> df = spark.createDataFrame([Row(genotypes=genotypes)], 'genotypes: array<struct
→˓<calls: array<int>>>')
>>> df.select(glow.expand_struct(glow.hardy_weinberg('genotypes'))).collect()
[Row(hetFreqHwe=0.6, pValueHwe=0.7)]

Parameters genotypes (Union[Column, str]) – The array of genotype structs with calls field

Return type Column

Returns A struct containing two fields, hetFreqHwe (the expected heterozygous frequency accord-
ing to Hardy-Weinberg equilibrium) and pValueHwe (the associated p-value)

glow.lift_over_coordinates(contigName, start, end, chainFile, minMatchRatio=None)
Performs liftover for the coordinates of a variant. To perform liftover of alleles and add additional metadata, see
Liftover.

Added in version 0.3.0.

Examples

>>> df = spark.read.format('vcf').load('test-data/liftover/unlifted.test.vcf').
→˓where('start = 18210071')
>>> chain_file = 'test-data/liftover/hg38ToHg19.over.chain.gz'
>>> reference_file = 'test-data/liftover/hg19.chr20.fa.gz'
>>> df.select('contigName', 'start', 'end').head()
Row(contigName='chr20', start=18210071, end=18210072)
>>> lifted_df = df.select(glow.expand_struct(glow.lift_over_coordinates('contigName
→˓', 'start', 'end', chain_file)))
>>> lifted_df.head()
Row(contigName='chr20', start=18190715, end=18190716)

Parameters
• contigName (Union[Column, str]) – The current contig name

• start (Union[Column, str]) – The current start

• end (Union[Column, str]) – The current end

• chainFile (str) – Location of the chain file on each node in the cluster

• minMatchRatio (Optional[float]) – Minimum fraction of bases that must remap to do
liftover successfully. If not provided, defaults to 0.95.

Return type Column

Returns A struct containing contigName, start, and end fields after liftover

glow.linear_regression_gwas(genotypes, phenotypes, covariates)
Performs a linear regression association test optimized for performance in a GWAS setting. See Linear regression
for details.

11.2. PySpark Functions 91

https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#float

glow Documentation

Added in version 0.3.0.

Examples

>>> from pyspark.ml.linalg import DenseMatrix
>>> phenotypes = [2, 3, 4]
>>> genotypes = [0, 1, 2]
>>> covariates = DenseMatrix(numRows=3, numCols=1, values=[1, 1, 1])
>>> df = spark.createDataFrame([Row(genotypes=genotypes, phenotypes=phenotypes,␣
→˓covariates=covariates)])
>>> df.select(glow.expand_struct(glow.linear_regression_gwas('genotypes',
→˓'phenotypes', 'covariates'))).collect()
[Row(beta=0.9999999999999998, standardError=1.4901161193847656e-08, pValue=9.
→˓486373847239922e-09)]

Parameters
• genotypes (Union[Column, str]) – A numeric array of genotypes

• phenotypes (Union[Column, str]) – A numeric array of phenotypes

• covariates (Union[Column, str]) – A spark.ml Matrix of covariates

Return type Column

Returns A struct containing beta, standardError, and pValue fields. See Linear regression.

glow.logistic_regression_gwas(genotypes, phenotypes, covariates, test, offset=None)
Performs a logistic regression association test optimized for performance in a GWAS setting. See Logistic re-
gression for more details.

Added in version 0.3.0.

Examples

>>> from pyspark.ml.linalg import DenseMatrix
>>> phenotypes = [1, 0, 0, 1, 1]
>>> genotypes = [0, 0, 1, 2, 2]
>>> covariates = DenseMatrix(numRows=5, numCols=1, values=[1, 1, 1, 1, 1])
>>> offset = [1, 0, 1, 0, 1]
>>> df = spark.createDataFrame([Row(genotypes=genotypes, phenotypes=phenotypes,␣
→˓covariates=covariates, offset=offset)])
>>> df.select(glow.expand_struct(glow.logistic_regression_gwas('genotypes',
→˓'phenotypes', 'covariates', 'Firth'))).collect()
[Row(beta=0.7418937644793101, oddsRatio=2.09990848346903, waldConfidenceInterval=[0.
→˓2509874689201784, 17.569066925598555], pValue=0.3952193664793294)]
>>> df.select(glow.expand_struct(glow.logistic_regression_gwas('genotypes',
→˓'phenotypes', 'covariates', 'LRT'))).collect()
[Row(beta=1.1658962684583645, oddsRatio=3.208797538802116,␣
→˓waldConfidenceInterval=[0.29709600522888285, 34.65674887513274], pValue=0.
→˓2943946848756769)]
>>> df.select(glow.expand_struct(glow.logistic_regression_gwas('genotypes',
→˓'phenotypes', 'covariates', 'Firth', 'offset'))).collect()
[Row(beta=0.8024832156793392, oddsRatio=2.231074294047771,␣
→˓waldConfidenceInterval=[0.2540891981649045, 19.590334974925725], pValue=0.
→˓3754070658316332)]

(continues on next page)

92 Chapter 11. Python API

https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str

glow Documentation

(continued from previous page)

>>> df.select(glow.expand_struct(glow.logistic_regression_gwas('genotypes',
→˓'phenotypes', 'covariates', 'LRT', 'offset'))).collect()
[Row(beta=1.1996041727573317, oddsRatio=3.3188029900720117,␣
→˓waldConfidenceInterval=[0.3071189078535928, 35.863807161497334], pValue=0.
→˓2857137988674153)]

Parameters
• genotypes (Union[Column, str]) – An numeric array of genotypes

• phenotypes (Union[Column, str]) – A double array of phenotype values

• covariates (Union[Column, str]) – A spark.ml Matrix of covariates

• test (str) – Which logistic regression test to use. Can be LRT or Firth

• offset (Union[Column, str, None]) – An optional double array of offset values. The offset
vector is added with coefficient 1 to the linear predictor term X*b.

Return type Column

Returns A struct containing beta, oddsRatio, waldConfidenceInterval, and pValue fields.
See Logistic regression.

glow.mean_substitute(array, missingValue=None)
Substitutes the missing values of a numeric array using the mean of the non-missing values. Any values that are
NaN, null or equal to the missing value parameter are considered missing. See Variant data transformations for
more details.

Added in version 0.4.0.

Examples

>>> df = spark.createDataFrame([Row(unsubstituted_values=[float('nan'), None, 0.0,␣
→˓1.0, 2.0, 3.0, 4.0])])
>>> df.select(glow.mean_substitute('unsubstituted_values', lit(0.0)).alias(
→˓'substituted_values')).collect()
[Row(substituted_values=[2.5, 2.5, 2.5, 1.0, 2.0, 3.0, 4.0])]
>>> df = spark.createDataFrame([Row(unsubstituted_values=[0, 1, 2, 3, -1, None])])
>>> df.select(glow.mean_substitute('unsubstituted_values').alias('substituted_values
→˓')).collect()
[Row(substituted_values=[0.0, 1.0, 2.0, 3.0, 1.5, 1.5])]

Parameters
• array (Union[Column, str]) – A numeric array that may contain missing values

• missingValue (Union[Column, str, None]) – A value that should be considered missing.
If not provided, this parameter defaults to -1.

Return type Column

Returns A numeric array with substituted missing values

glow.normalize_variant(contigName, start, end, refAllele, altAlleles, refGenomePathString)
Normalizes the variant with a behavior similar to vt normalize or bcftools norm. Creates a StructType column
including the normalized start, end, referenceAllele and alternateAlleles fields (whether they are

11.2. PySpark Functions 93

https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None

glow Documentation

changed or unchanged as the result of normalization) as well as a StructType field called normalizationStatus
that contains the following fields:

changed: A boolean field indicating whether the variant data was changed as a result of normalization

errorMessage: An error message in case the attempt at normalizing the row hit an error. In this
case, the changed field will be set to false. If no errors occur, this field will be null.

In case of an error, the start, end, referenceAllele and alternateAlleles fields in the generated struct
will be null.

Added in version 0.3.0.

Examples

>>> df = spark.read.format('vcf').load('test-data/variantsplitternormalizer-test/
→˓test_left_align_hg38_altered.vcf')
>>> ref_genome = 'test-data/variantsplitternormalizer-test/Homo_sapiens_assembly38.
→˓20.21_altered.fasta'
>>> df.select('contigName', 'start', 'end', 'referenceAllele', 'alternateAlleles').
→˓head()
Row(contigName='chr20', start=400, end=401, referenceAllele='G', alternateAlleles=[
→˓'GATCTTCCCTCTTTTCTAATATAAACACATAAAGCTCTGTTTCCTTCTAGGTAACTGGTTTGAG'])
>>> normalized_df = df.select('contigName', glow.expand_struct(glow.normalize_
→˓variant('contigName', 'start', 'end', 'referenceAllele', 'alternateAlleles', ref_
→˓genome)))
>>> normalized_df.head()
Row(contigName='chr20', start=268, end=269, referenceAllele='A', alternateAlleles=[
→˓'ATTTGAGATCTTCCCTCTTTTCTAATATAAACACATAAAGCTCTGTTTCCTTCTAGGTAACTGG'],␣
→˓normalizationStatus=Row(changed=True, errorMessage=None))

Parameters
• contigName (Union[Column, str]) – The current contig name

• start (Union[Column, str]) – The current start

• end (Union[Column, str]) – The current end

• refAllele (Union[Column, str]) – The current reference allele

• altAlleles (Union[Column, str]) – The current array of alternate alleles

• refGenomePathString (str) – A path to the reference genome .fasta file. The .fasta
file must be accompanied with a .fai index file in the same folder.

Return type Column

Returns A struct as explained above

glow.sample_call_summary_stats(genotypes, refAllele, alternateAlleles)
Computes per-sample call summary statistics. See Sample Quality Control for more details.

Added in version 0.3.0.

94 Chapter 11. Python API

https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

glow Documentation

Examples

>>> sites = [
... {'refAllele': 'C', 'alternateAlleles': ['G'], 'genotypes': [{'sampleId':
→˓'NA12878', 'calls': [0, 0]}]},
... {'refAllele': 'A', 'alternateAlleles': ['G'], 'genotypes': [{'sampleId':
→˓'NA12878', 'calls': [1, 1]}]},
... {'refAllele': 'AG', 'alternateAlleles': ['A'], 'genotypes': [{'sampleId':
→˓'NA12878', 'calls': [1, 0]}]}]
>>> df = spark.createDataFrame(sites, 'refAllele: string, alternateAlleles: array
→˓<string>, genotypes: array<struct<sampleId: string, calls: array<int>>>')
>>> df.select(glow.sample_call_summary_stats('genotypes', 'refAllele',
→˓'alternateAlleles').alias('stats')).collect()
[Row(stats=[Row(sampleId='NA12878', callRate=1.0, nCalled=3, nUncalled=0, nHomRef=1,
→˓ nHet=1, nHomVar=1, nSnp=2, nInsertion=0, nDeletion=1, nTransition=2,␣
→˓nTransversion=0, nSpanningDeletion=0, rTiTv=inf, rInsertionDeletion=0.0,␣
→˓rHetHomVar=1.0)])]

Parameters
• genotypes (Union[Column, str]) – An array of genotype structs with calls field

• refAllele (Union[Column, str]) – The reference allele

• alternateAlleles (Union[Column, str]) – An array of alternate alleles

Return type Column

Returns A struct containing sampleId, callRate, nCalled, nUncalled, nHomRef,
nHet, nHomVar, nSnp, nInsertion, nDeletion, nTransition, nTransversion,
nSpanningDeletion, rTiTv, rInsertionDeletion, rHetHomVar fields. See Sample
Quality Control.

glow.sample_dp_summary_stats(genotypes)
Computes per-sample summary statistics about the depth field in an array of genotype structs.

Added in version 0.3.0.

Examples

>>> sites = [
... {'genotypes': [{'sampleId': 'NA12878', 'depth': 1}]},
... {'genotypes': [{'sampleId': 'NA12878', 'depth': 2}]},
... {'genotypes': [{'sampleId': 'NA12878', 'depth': 3}]}]
>>> df = spark.createDataFrame(sites, 'genotypes: array<struct<depth: int,␣
→˓sampleId: string>>')
>>> df.select(glow.sample_dp_summary_stats('genotypes').alias('stats')).collect()
[Row(stats=[Row(sampleId='NA12878', mean=2.0, stdDev=1.0, min=1.0, max=3.0)])]

Parameters genotypes (Union[Column, str]) – An array of genotype structs with depth field

Return type Column

Returns An array of structs where each struct contains mean, stDev, min, and max of the genotype
depths for a sample. If sampleId is present in a genotype, it will be propagated to the resulting
struct as an extra field.

11.2. PySpark Functions 95

https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str

glow Documentation

glow.sample_gq_summary_stats(genotypes)
Computes per-sample summary statistics about the genotype quality field in an array of genotype structs.

Added in version 0.3.0.

Examples

>>> sites = [
... Row(genotypes=[Row(sampleId='NA12878', conditionalQuality=1)]),
... Row(genotypes=[Row(sampleId='NA12878', conditionalQuality=2)]),
... Row(genotypes=[Row(sampleId='NA12878', conditionalQuality=3)])]
>>> df = spark.createDataFrame(sites, 'genotypes: array<struct<sampleId: string,␣
→˓conditionalQuality: int>>')
>>> df.select(glow.sample_gq_summary_stats('genotypes').alias('stats')).collect()
[Row(stats=[Row(sampleId='NA12878', mean=2.0, stdDev=1.0, min=1.0, max=3.0)])]

Parameters genotypes (Union[Column, str]) – An array of genotype structs with
conditionalQuality field

Return type Column

Returns An array of structs where each struct contains mean, stDev, min, and max of the genotype
qualities for a sample. If sampleId is present in a genotype, it will be propagated to the resulting
struct as an extra field.

glow.subset_struct(struct, *fields)
Selects fields from a struct.

Added in version 0.3.0.

Examples

>>> df = spark.createDataFrame([Row(struct=Row(a=1, b=2, c=3))])
>>> df.select(glow.subset_struct('struct', 'a', 'c').alias('struct')).collect()
[Row(struct=Row(a=1, c=3))]

Parameters
• struct (Union[Column, str]) – Struct from which to select fields

• fields (str) – Fields to select

Return type Column

Returns A struct containing only the indicated fields

glow.vector_to_array(vector)
Converts a spark.ml Vector (sparse or dense) to an array of doubles.

Added in version 0.3.0.

96 Chapter 11. Python API

https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

glow Documentation

Examples

>>> from pyspark.ml.linalg import DenseVector, SparseVector
>>> df = spark.createDataFrame([Row(v=SparseVector(3, {0: 1.0, 2: 2.0})),␣
→˓Row(v=DenseVector([3.0, 4.0]))])
>>> df.select(glow.vector_to_array('v').alias('arr')).collect()
[Row(arr=[1.0, 0.0, 2.0]), Row(arr=[3.0, 4.0])]

Parameters vector (Union[Column, str]) – Vector to convert

Return type Column

Returns An array of doubles

11.3 GloWGR

11.3.1 WGR functions

class glow.wgr.LogisticRidgeRegression(reduced_block_df, label_df, sample_blocks, cov_df=Empty
DataFrame Columns: [] Index: [], add_intercept=True,
alphas=[])

The LogisticRidgeRegression class is used to fit logistic ridge regression models against one or more labels
optimized over a provided list of ridge alpha parameters. The optimal ridge alpha value is chosen for each label
by minimizing the average out of fold log_loss scores.

fit()
Fits a logistic regression model, represented by a Spark DataFrame containing coefficients for each of the
ridge alpha parameters, for each block in the reduced block matrix, for each label in the target labels, as
well as a Spark DataFrame containing the optimal ridge alpha value for each label.

Return type (<class ‘pyspark.sql.dataframe.DataFrame’>, <class ‘pys-
park.sql.dataframe.DataFrame’>)

Returns Two Spark DataFrames, one containing the model resulting from the fitting routine and
one containing the results of the cross validation procedure.

fit_transform(response='linear')
Fits a logistic ridge regression model, then transforms the matrix using the model.

Parameters response (str) – String specifying the desired output. Can be ‘linear’ to specify
the direct output of the linear WGR model (default) or ‘sigmoid’ to specify predicted label
probabilities.

Return type DataFrame

Returns Pandas DataFrame containing prediction y_hat values. The shape and order match la-
beldf such that the rows are indexed by sample ID and the columns by label. The column
types are float64.

fit_transform_loco(response='linear', chromosomes=[])
Fits a logistic ridge regression model with a block matrix, then generates predictions for the target labels
in the provided label DataFrame by applying the model resulting from the LogisticRidgeRegression fit
method to the starting reduced block matrix using a leave-one-chromosome-out (LOCO) approach (this
method caches the model and cross-validation DataFrames in the process for better performance).

Parameters

11.3. GloWGR 97

https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

glow Documentation

• response (str) – String specifying the desired output. Can be ‘linear’ to specify the
direct output of the linear WGR model (default) or ‘sigmoid’ to specify predicted label
probabilities.

• chromosomes (List[str]) – List of chromosomes for which to generate a prediction (op-
tional). If not provided, the chromosomes will be inferred from the block matrix.

Return type DataFrame

Returns Pandas DataFrame containing prediction y_hat values per chromosome. The rows are
indexed by sample ID and chromosome; the columns are indexed by label. The column types
are float64. The DataFrame is sorted using chromosome as the primary sort key, and sample
ID as the secondary sort key.

classmethod from_ridge_reduction(cls, ridge_reduced, alphas=[])
Initializes an instance of LogsiticRidgeRegression using a RidgeReduction object

Parameters
• ridge_reduced (RidgeReduction) – A RidgeReduction instance based on which the

LogisticRidgeRegression instance must be made

• alphas (List[float]) – array_like of alpha values used in the logistic ridge regression
(optional).

reduce_block_matrix(response)
Transforms a starting reduced block matrix by applying a linear model. The form of the output can either
be a direct linear transformation (response = “linear”) or a linear transformation followed by a sigmoid
transformation (response = “sigmoid”).

Parameters response (str) – String specifying what transformation to apply (“linear” or “sig-
moid”)

Return type DataFrame

Returns Spark DataFrame containing the result of the transformation.

transform(response='linear')
Generates GWAS covariates for the target labels in the provided label DataFrame by applying the model
resulting from the LogisticRidgeRegression fit method to the starting reduced block matrix.

Parameters response (str) – String specifying the desired output. Can be ‘linear’ to specify
the direct output of the linear WGR model (default) or ‘sigmoid’ to specify predicted label
probabilities.

Return type DataFrame

Returns Pandas DataFrame containing covariate values. The shape and order match label_df
such that the rows are indexed by sample ID and the columns by label. The column types are
float64.

transform_loco(response='linear', chromosomes=[])
Generates predictions for the target labels in the provided label DataFrame by applying the model result-
ing from the LogisticRidgeRegression fit method to the starting reduced block matrix using a leave-one-
chromosome-out (LOCO) approach (this method caches the model and cross-validation DataFrames in the
process for better performance).

Parameters
• response (str) – String specifying the desired output. Can be ‘linear’ to specify the

direct output of the linear WGR model (default) or ‘sigmoid’ to specify predicted label
probabilities.

98 Chapter 11. Python API

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

glow Documentation

• chromosomes (List[str]) – List of chromosomes for which to generate a prediction (op-
tional). If not provided, the chromosomes will be inferred from the block matrix.

Return type DataFrame

Returns Pandas DataFrame containing prediction y_hat values per chromosome. The rows are
indexed by sample ID and chromosome; the columns are indexed by label. The column types
are float64. The DataFrame is sorted using chromosome as the primary sort key, and sample
ID as the secondary sort key.

class glow.wgr.RidgeReduction(block_df, label_df, sample_blocks, cov_df=Empty DataFrame Columns: []
Index: [], add_intercept=True, alphas=[], label_type='detect')

The RidgeReduction class is intended to reduce the feature space of an N by M block matrix X to an N by P<<M
block matrix. This is done by fitting K ridge models within each block of X on one or more target labels, such
that a block with L columns to begin with will be reduced to a block with K columns, where each column is the
prediction of one ridge model for one target label.

fit()
Fits a ridge reducer model, represented by a Spark DataFrame containing coefficients for each of the ridge
alpha parameters, for each block in the starting matrix, for each label in the target labels.

Return type DataFrame

Returns Spark DataFrame containing the model resulting from the fitting routine.

fit_transform()
Fits a ridge reduction model with a block matrix, then transforms the matrix using the model.

Return type DataFrame

Returns Spark DataFrame representing the reduced block matrix

transform()
Transforms a starting block matrix to the reduced block matrix, using a reducer model produced by the
RidgeReduction fit method.

Return type DataFrame

Returns Spark DataFrame representing the reduced block matrix

class glow.wgr.RidgeRegression(reduced_block_df, label_df, sample_blocks, cov_df=Empty DataFrame
Columns: [] Index: [], add_intercept=True, alphas=[])

The RidgeRegression class is used to fit ridge models against one or more labels optimized over a provided list of
ridge alpha parameters. It is similar in function to RidgeReduction except that whereas RidgeReduction attempts
to reduce a starting matrix X to a block matrix of smaller dimension, RidgeRegression is intended to find an
optimal model of the form Y_hat ~ XB, where Y_hat is a matrix of one or more predicted labels and B is a
matrix of coefficients. The optimal ridge alpha value is chosen for each label by maximizing the average out of
fold r2 score.

fit()
Fits a ridge regression model, represented by a Spark DataFrame containing coefficients for each of the
ridge alpha parameters, for each block in the starting reduced matrix, for each label in the target labels, as
well as a Spark DataFrame containing the optimal ridge alpha value for each label.

Return type (<class ‘pyspark.sql.dataframe.DataFrame’>, <class ‘pys-
park.sql.dataframe.DataFrame’>)

Returns Two Spark DataFrames, one containing the model resulting from the fitting routine and
one containing the results of the cross validation procedure.

fit_transform()
Fits a ridge regression model, then transforms the matrix using the model.

11.3. GloWGR 99

https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str

glow Documentation

Return type DataFrame

Returns Pandas DataFrame containing prediction y_hat values. The shape and order match la-
beldf such that the rows are indexed by sample ID and the columns by label. The column
types are float64.

fit_transform_loco(chromosomes=[])
Fits a ridge regression model and then generates predictions for the target labels in the provided label
DataFrame by applying the model resulting from the RidgeRegression fit method to the starting reduced
block matrix using a leave-one-chromosome-out (LOCO) approach ((this method caches the model and
cross-validation DataFrames in the process for better performance).

Parameters chromosomes (List[str]) – List of chromosomes for which to generate a predic-
tion (optional). If not provided, the chromosomes will be inferred from the block matrix.

Return type DataFrame

Returns Pandas DataFrame containing offset values (y_hat) per chromosome. The rows are in-
dexed by sample ID and chromosome; the columns are indexed by label. The column types
are float64. The DataFrame is sorted using chromosome as the primary sort key, and sample
ID as the secondary sort key.

classmethod from_ridge_reduction(cls, ridge_reduced, alphas=[])
Initializes an instance of RidgeRegression using a RidgeReduction object

Parameters
• ridge_reduced (RidgeReduction) – A RidgeReduction instance based on which the

RidgeRegression instance must be made

• alphas (List[float]) – array_like of alpha values used in the ridge regression (optional).

transform()
Generates predictions for the target labels in the provided label DataFrame by applying the model resulting
from the RidgeRegression fit method to the reduced block matrix.

Return type DataFrame

Returns Pandas DataFrame containing prediction y_hat values. The shape and order match la-
bel_df such that the rows are indexed by sample ID and the columns by label. The column
types are float64.

transform_loco(chromosomes=[])
Generates predictions for the target labels in the provided label DataFrame by applying the model resulting
from the RidgeRegression fit method to the starting reduced block matrix using a leave-one-chromosome-
out (LOCO) approach (this method caches the model and cross-validation DataFrames in the process for
better performance).

Parameters chromosomes (List[str]) – List of chromosomes for which to generate a predic-
tion (optional). If not provided, the chromosomes will be inferred from the block matrix.

Return type DataFrame

Returns Pandas DataFrame containing offset values (y_hat) per chromosome. The rows are in-
dexed by sample ID and chromosome; the columns are indexed by label. The column types
are float64. The DataFrame is sorted using chromosome as the primary sort key, and sample
ID as the secondary sort key.

glow.wgr.block_variants_and_samples(variant_df, sample_ids, variants_per_block, sample_block_count)
Creates a blocked GT matrix and index mapping from sample blocks to a list of corresponding sample IDs. Uses
the same sample-blocking logic as the blocked GT matrix transformer.

Requires that:

100 Chapter 11. Python API

https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str

glow Documentation

• Each variant row has the same number of values

• The number of values per row matches the number of sample IDs

Parameters
• variant_df (DataFrame) – The variant DataFrame

• sample_ids (List[str]) – The list of sample ID strings

• variants_per_block (int) – The number of variants per block

• sample_block_count (int) – The number of sample blocks

Return type (<class ‘pyspark.sql.dataframe.DataFrame’>, typing.Dict[str, typing.List[str]])

Returns tuple of (blocked GT matrix, index mapping)

glow.wgr.estimate_loco_offsets(block_df, label_df, sample_blocks, cov_df=Empty DataFrame Columns: []
Index: [], add_intercept=True, reduction_alphas=[], regression_alphas=[],
label_type='detect', chromosomes=[])

The one-stop function to generate WGR predictors to be used as offsets in gwas functions. Given the input
the function performs the ridge reduction followed by appropriate choice of ridge regression or logistic ridge
regression in a loco manner.

Parameters
• block_df (DataFrame) – Spark DataFrame representing the beginning block matrix X

• label_df (DataFrame) – Pandas DataFrame containing the target labels used in fitting the
ridge models

• sample_blocks (Dict[str, List[str]]) – Dict containing a mapping of sample_block ID
to a list of corresponding sample IDs

• cov_df (DataFrame) – Pandas DataFrame containing covariates to be included in every
model in the stacking ensemble (optional).

• add_intercept (bool) – If True, an intercept column (all ones) will be added to the co-
variates (as the first column)

• reduction_alphas (List[float]) – array_like of alpha values used in the ridge reduction
(optional). If not provided, the automatically generates alphas for reduction.

• regression_alphas (List[float]) – array_like of alpha values used in the ridge or lo-
gistic ridge regression (optional). If not provided, the automatically generates alphas for
regression.

• label_type – String to determine type treatment of labels. It can be ‘detect’ (default),
‘binary’, or ‘quantitative’. On ‘detect’ the function picks binary or quantitative based on
whether label_df is all binary or not, respectively.

• chromosomes (List[str]) – List of chromosomes for which to generate offsets (optional).
If not provided, the chromosomes will be inferred from the block matrix.

Return type DataFrame

Returns Pandas DataFrame containing offset values per chromosome. The rows are indexed by sam-
ple ID and chromosome; the columns are indexed by label. The column types are float64. The
DataFrame is sorted using chromosome as the primary sort key, and sample ID as the secondary
sort key.

11.3. GloWGR 101

https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str

glow Documentation

glow.wgr.get_sample_ids(data)
Extracts sample IDs from a variant DataFrame, such as one read from PLINK files.

Requires that the sample IDs:

• Are in genotype.sampleId

• Are the same across all the variant rows

• Are a list of strings

• Are non-empty

• Are unique

Parameters data (DataFrame) – The variant DataFrame containing sample IDs

Return type List[str]

Returns list of sample ID strings

glow.wgr.reshape_for_gwas(spark, label_df)
Reshapes a Pandas DataFrame into a Spark DataFrame with a convenient format for Glow’s GWAS functions.
This function can handle labels that are either per-sample or per-sample and per-contig, like those generated by
GloWGR’s transform_loco function.

Examples

>>> label_df = pd.DataFrame({'label1': [1, 2], 'label2': [3, 4]}, index=['sample1',
→˓'sample2'])
>>> reshaped = reshape_for_gwas(spark, label_df)
>>> reshaped.head()
Row(label='label1', values=[1, 2])

>>> loco_label_df = pd.DataFrame({'label1': [1, 2], 'label2': [3, 4]},
... index=pd.MultiIndex.from_tuples([('sample1', 'chr1'), ('sample1', 'chr2')]))
>>> reshaped = reshape_for_gwas(spark, loco_label_df)
>>> reshaped.head()
Row(contigName='chr1', label='label1', values=[1])

Requires that:

• The input label DataFrame is indexed by sample id or by (sample id, contig name)

Parameters
• spark (SparkSession) – A Spark session

• label_df (DataFrame) – A pandas DataFrame containing labels. The Data Frame should
either be indexed by sample id or multi indexed by (sample id, contig name). Each column
is interpreted as a label.

Return type DataFrame

Returns A Spark DataFrame with a convenient format for Glow regression functions. Each row con-
tains the label name, the contig name if provided in the input DataFrame, and an array containing
the label value for each sample.

102 Chapter 11. Python API

https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str

glow Documentation

11.3.2 GWAS functions

glow.gwas.linear_regression(genotype_df, phenotype_df, covariate_df=Empty DataFrame Columns: [] Index:
[], offset_df=Empty DataFrame Columns: [] Index: [], contigs=None,
add_intercept=True, values_column='values', dt=<class 'numpy.float64'>,
verbose_output=False, intersect_samples=False, genotype_sample_ids=None)

Uses linear regression to test for association between genotypes and one or more phenotypes. The implementation
is a distributed version of the method used in regenie: https://www.biorxiv.org/content/10.1101/2020.06.19.
162354v2

Implementation details:

On the driver node, we decompose the covariate matrix into an orthonormal basis and use it to project the
covariates out of the phenotype matrix. The orthonormal basis and the phenotype residuals are broadcast as part
of a Pandas UDF. In each Spark task, we project the covariates out of a block of genotypes and then compute the
regression statistics for each phenotype, taking into account the distinct missingness patterns of each phenotype.

Examples

>>> np.random.seed(42)
>>> n_samples, n_phenotypes, n_covariates = (710, 3, 3)
>>> phenotype_df = pd.DataFrame(np.random.random((n_samples, n_phenotypes)),␣
→˓columns=['p1', 'p2', 'p3'])
>>> covariate_df = pd.DataFrame(np.random.random((n_samples, n_phenotypes)))
>>> genotype_df = (spark.read.format('vcf').load('test-data/1kg_sample.vcf')
... .select('contigName', 'start', 'genotypes'))
>>> results = glow.gwas.linear_regression(genotype_df, phenotype_df, covariate_df,
... values_column=glow.genotype_states('genotypes'))
>>> results.head()
Row(contigName='1', start=904164, effect=0.0453..., stderror=0.0214..., tvalue=2.
→˓114..., pvalue=0.0348..., phenotype='p1')

>>> phenotype_df = pd.DataFrame(np.random.random((n_samples, n_phenotypes)),␣
→˓columns=['p1', 'p2', 'p3'])
>>> covariate_df = pd.DataFrame(np.random.random((n_samples, n_phenotypes)))
>>> genotype_df = (spark.read.format('vcf').load('test-data/1kg_sample.vcf')
... .select('contigName', 'start', 'genotypes'))
>>> contigs = ['1', '2', '3']
>>> offset_index = pd.MultiIndex.from_product([phenotype_df.index, contigs])
>>> offset_df = pd.DataFrame(np.random.random((n_samples * len(contigs), n_
→˓phenotypes)),
... index=offset_index, columns=phenotype_df.columns)
>>> results = glow.gwas.linear_regression(genotype_df, phenotype_df, covariate_df,
... offset_df=offset_df, values_column=glow.genotype_states('genotypes'))

Parameters
• genotype_df (DataFrame) – Spark DataFrame containing genomic data

• phenotype_df (DataFrame) – Pandas DataFrame containing phenotypic data

• covariate_df (DataFrame) – An optional Pandas DataFrame containing covariates

• offset_df (DataFrame) – An optional Pandas DataFrame containing the phenotype offset,
as output by GloWGR’s RidgeRegression or Regenie step 1. The actual phenotype used for

11.3. GloWGR 103

https://www.biorxiv.org/content/10.1101/2020.06.19.162354v2
https://www.biorxiv.org/content/10.1101/2020.06.19.162354v2

glow Documentation

linear regression is the mean-centered, residualized and scaled phenotype_df minus the
appropriate offset. The offset_df may have one or two levels of indexing. If one level, the
index should be the same as the phenotype_df. If two levels, the level 0 index should be
the same as the phenotype_df, and the level 1 index should be the contig name. The two
level index scheme allows for per-contig offsets like LOCO predictions from GloWGR.

• contigs (Optional[List[str]]) – When using LOCO offsets, this parameter indicates the
contigs to analyze. You can use this parameter to limit the size of the broadcasted data,
which may be necessary with large sample sizes. If this parameter is omitted, the contigs are
inferred from the offset_df.

• add_intercept (bool) – Whether or not to add an intercept column to the covariate
DataFrame

• values_column (Union[str, Column]) – A column name or column expression to test with
linear regression. If a column name is provided, genotype_df should have a column with
this name and a numeric array type. If a column expression is provided, the expression should
return a numeric array type.

• dt (type) – The numpy datatype to use in the linear regression test. Must be np.float32
or np.float64.

• verbose_output (bool) – Whether or not to generate additional test statistics (n, sum_x,
y_transpose_x) to the output DataFrame. These values are derived directly from pheno-
type_df and genotype_df, and does not reflect any standardization performed as part of the
implementation of linear_regression.

• intersect_samples (bool) – The current implementation of linear regression is opti-
mized for speed, but is not robust to high levels missing phenotype values. Without handling
missingness appropriately, pvalues may become inflated due to imputation. When inter-
sect_samples is enabled, samples that do no exist in the phenotype dataframe will be dropped
from genotypes, offsets, and covariates prior to regression analysis. Note that if phenotypes
in phenotypes_df contain missing values, these samples will not be automatically dropped.
The user is responsible for determining their desired levels of missingness and imputation.
Drop any rows with missing values from phenotype_df prior to linear_regression to prevent
any imputation. If covariates are provided, covariate and phenotype samples will automati-
cally be intersected.

• genotype_sample_ids (Optional[List[str]]) – Sample ids from genotype_df. i.e. from
applying glow.wgr.functions.get_sample_ids(genotype_df) or if include_sample_ids=False
was used during the generation genotype_df, then using an externally managed list of sam-
ple_ids that correspond to the array of genotype calls.

Return type DataFrame

Returns
A Spark DataFrame that contains

• All columns from genotype_df except the values_column and the genotypes column if
one exists

• effect: The effect size estimate for the genotype

• stderror: The estimated standard error of the effect

• tvalue: The T statistic

• pvalue: P value estimated from a two sided T-test

• phenotype: The phenotype name as determined by the column names of phenotype_df

104 Chapter 11. Python API

https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#type
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str

glow Documentation

• ``n``(int): (verbose_output only) number of samples with non-null phenotype

• ``sum_x``(float): (verbose_output only) sum of genotype inputs

• ``y_transpose_x``(float): (verbose_output only) dot product of phenotype response (missing values encoded as zeros)
and genotype input, i.e. phenotype value * number of alternate alleles

glow.gwas.logistic_regression(genotype_df, phenotype_df, covariate_df=Empty DataFrame Columns: []
Index: [], offset_df=Empty DataFrame Columns: [] Index: [],
correction='approx-firth', pvalue_threshold=0.05, contigs=None,
add_intercept=True, values_column='values', dt=<class 'numpy.float64'>,
intersect_samples=False, genotype_sample_ids=None)

Uses logistic regression to test for association between genotypes and one or more binary phenotypes. This is a
distributed version of the method from regenie: https://www.nature.com/articles/s41588-021-00870-7

Implementation details:

On the driver node, we fit a logistic regression model based on the covariates for each phenotype:

𝑙𝑜𝑔𝑖𝑡(𝑦) ∼ 𝐶

where 𝑦 is a phenotype vector and 𝐶 is the covariate matrix.

We compute the probability predictions 𝑦 and broadcast the residuals (𝑦− 𝑦), 𝛾 vectors (where 𝛾 = 𝑦 * (1− 𝑦)),
and (𝐶ᵀ𝛾𝐶)−1 matrices. In each task, we then adjust the new genotypes based on the null fit, perform a score
test as a fast scan for potentially significant variants, and then test variants with p-values below a threshold using
a more selective, more expensive test.

Parameters
• genotype_df (DataFrame) – Spark DataFrame containing genomic data

• phenotype_df (DataFrame) – Pandas DataFrame containing phenotypic data

• covariate_df (DataFrame) – An optional Pandas DataFrame containing covariates

• offset_df (DataFrame) – An optional Pandas DataFrame containing the phenotype offset.
This value will be used as an offset in the covariate only and per variant logistic regression
models. The offset_df may have one or two levels of indexing. If one level, the index
should be the same as the phenotype_df. If two levels, the level 0 index should be the same
as the phenotype_df, and the level 1 index should be the contig name. The two level index
scheme allows for per-contig offsets like LOCO predictions from GloWGR.

• correction (str) – Which test to use for variants that meet a significance threshold for the
score test. Supported methods are none and approx-firth.

• pvalue_threshold (float) – Variants with a pvalue below this threshold will be tested
using the correction method.

• contigs (Optional[List[str]]) – When using LOCO offsets, this parameter indicates the
contigs to analyze. You can use this parameter to limit the size of the broadcasted data,
which may be necessary with large sample sizes. If this parameter is omitted, the contigs are
inferred from the offset_df.

• add_intercept (bool) – Whether or not to add an intercept column to the covariate
DataFrame

• values_column (str) – A column name or column expression to test with linear regression.
If a column name is provided, genotype_df should have a column with this name and
a numeric array type. If a column expression is provided, the expression should return a
numeric array type.

11.3. GloWGR 105

https://www.nature.com/articles/s41588-021-00870-7
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

glow Documentation

• dt (type) – The numpy datatype to use in the linear regression test. Must be np.float32
or np.float64.

Return type DataFrame

Returns
A Spark DataFrame that contains

• All columns from genotype_df except the values_column and the genotypes column if
one exists

• effect: The effect size (if approximate Firth correction was applied)

• stderror: Standard error of the effect size (if approximate Firth correction was applied)

• correctionSucceeded: Whether the correction succeeded (if the correction test method
is not none). True if succeeded, False if failed, null if correction was not applied.

• chisq: The chi squared test statistic according to the score test or the correction method

• pvalue: p-value estimated from the test statistic

• phenotype: The phenotype name as determined by the column names of phenotype_df

11.4 Hail Interoperation Functions

Glow includes functionality to enable interoperation with Hail.

glow.hail.from_matrix_table(mt, include_sample_ids=True)
Converts a Hail MatrixTable to a Glow DataFrame. The variant fields are derived from the Hail MatrixTable
row fields. The sample IDs are derived from the Hail MatrixTable column fields. All other genotype fields are
derived from the Hail MatrixTable entry fields.

Requires that the MatrixTable rows contain locus and alleles fields.

Parameters
• mt (MatrixTable) – The Hail MatrixTable to convert

• include_sample_ids (bool) – If true (default), include sample IDs in the Glow
DataFrame. Sample names increase the size of each row, both in memory and on storage.

Return type DataFrame

Returns Glow DataFrame converted from the MatrixTable.

106 Chapter 11. Python API

https://docs.python.org/3/library/functions.html#type
https://hail.is/index.html
https://docs.python.org/3/library/functions.html#bool

PYTHON MODULE INDEX

g
glow, 86
glow.gwas, 103
glow.hail, 106
glow.wgr, 97

107

glow Documentation

108 Python Module Index

INDEX

A
add_struct_fields() (in module glow), 86
array_summary_stats() (in module glow), 86
array_to_dense_vector() (in module glow), 87
array_to_sparse_vector() (in module glow), 87

B
block_variants_and_samples() (in module

glow.wgr), 100

C
call_summary_stats() (in module glow), 87

D
dp_summary_stats() (in module glow), 88

E
estimate_loco_offsets() (in module glow.wgr), 101
expand_struct() (in module glow), 88
explode_matrix() (in module glow), 88

F
fit() (glow.wgr.LogisticRidgeRegression method), 97
fit() (glow.wgr.RidgeReduction method), 99
fit() (glow.wgr.RidgeRegression method), 99
fit_transform() (glow.wgr.LogisticRidgeRegression

method), 97
fit_transform() (glow.wgr.RidgeReduction method),

99
fit_transform() (glow.wgr.RidgeRegression method),

99
fit_transform_loco()

(glow.wgr.LogisticRidgeRegression method), 97
fit_transform_loco() (glow.wgr.RidgeRegression

method), 100
from_matrix_table() (in module glow.hail), 106
from_ridge_reduction()

(glow.wgr.LogisticRidgeRegression class
method), 98

from_ridge_reduction() (glow.wgr.RidgeRegression
class method), 100

G
genotype_states() (in module glow), 89
get_sample_ids() (in module glow.wgr), 101
glow

module, 86
glow.gwas

module, 103
glow.hail

module, 106
glow.wgr

module, 97
gq_summary_stats() (in module glow), 89

H
hard_calls() (in module glow), 90
hardy_weinberg() (in module glow), 90

L
lift_over_coordinates() (in module glow), 91
linear_regression() (in module glow.gwas), 103
linear_regression_gwas() (in module glow), 91
logistic_regression() (in module glow.gwas), 105
logistic_regression_gwas() (in module glow), 92
LogisticRidgeRegression (class in glow.wgr), 97

M
mean_substitute() (in module glow), 93
module

glow, 86
glow.gwas, 103
glow.hail, 106
glow.wgr, 97

N
normalize_variant() (in module glow), 93

R
reduce_block_matrix()

(glow.wgr.LogisticRidgeRegression method), 98
register() (in module glow), 85
reshape_for_gwas() (in module glow.wgr), 102

109

glow Documentation

RidgeReduction (class in glow.wgr), 99
RidgeRegression (class in glow.wgr), 99

S
sample_call_summary_stats() (in module glow), 94
sample_dp_summary_stats() (in module glow), 95
sample_gq_summary_stats() (in module glow), 96
subset_struct() (in module glow), 96

T
transform() (glow.wgr.LogisticRidgeRegression

method), 98
transform() (glow.wgr.RidgeReduction method), 99
transform() (glow.wgr.RidgeRegression method), 100
transform() (in module glow), 85
transform_loco() (glow.wgr.LogisticRidgeRegression

method), 98
transform_loco() (glow.wgr.RidgeRegression

method), 100

V
vector_to_array() (in module glow), 96

110 Index

	Introduction to Glow
	Getting Started
	Running Locally
	Notebooks embedded in the docs
	Getting started on Databricks
	Getting started on other cloud services

	GWAS Tutorial
	1. Quality Control
	2. Glow Whole Genome Regression (GloWGR)
	3. Regression
	Quality control
	Quantitative glow whole genome regression
	Linear regression
	Binary glow whole genome regression
	Logistic regression

	Benchmarks
	Glow vs Hail comparison
	Correlation of Glow and Hail regression P values

	Variant Data Manipulation
	Data Simulation
	Simulate Covariates & Phenotypes
	Notebook

	Simulate Genotypes
	Notebook

	Read and Write VCF, Plink, and BGEN with Spark
	VCF
	BGEN
	PLINK
	Notebook

	Read Genome Annotations (GFF3) as a Spark DataFrame
	Schema
	1. Inferred schema
	2. User-specified schema
	Notebook

	Create a Genomics Delta Lake
	VCF to Delta Lake table notebook

	Variant Quality Control
	Notebook

	Sample Quality Control
	Computing user-defined sample QC metrics
	aggregate_by_index
	Explode and aggregate
	Notebook

	Liftover
	Create a liftOver cluster
	Coordinate liftOver
	Variant liftOver
	Liftover notebook

	Variant Normalization
	normalize_variants Transformer
	Usage
	Options
	normalize_variant Function
	Variant normalization notebook

	Split Multiallelic Variants
	Usage
	Split Multiallelic Variants notebook

	Merging Variant Datasets
	Aggregating INFO fields
	Joint genotyping
	Notebook

	Hail Interoperation
	Create a Hail cluster
	Convert to a Glow DataFrame
	Schema mapping
	Hail interoperation notebook

	Utility Functions
	Struct transformations
	Spark ML transformations
	Variant data transformations

	Tertiary Analysis
	Parallelizing Command-Line Bioinformatics Tools With the Pipe Transformer
	Usage
	Integrating with bioinformatics tools
	Options
	VCF input formatter

	Cleanup
	Pipe Transformer bedtools example notebook
	Pipe Transformer Variant Effect Predictor (VEP) example notebook

	Using Python Statistics Libraries
	pandas example notebook

	GloWGR: Whole Genome Regression
	Performance
	Overview
	Data preparation
	1. Genotype data
	Example

	2. Phenotype data
	3. Covariate data
	Example

	Stage 1. Genotype matrix blocking
	Parameters
	Return
	Example

	Stage 2. Dimensionality reduction
	1. Initialization
	Example

	2. Model fitting
	Parameters
	Return
	Example

	3. Model transformation
	Parameters
	Return
	Example

	Performing fit and transform in a single step
	Example

	Stage 3. Estimate phenotypic predictors
	1. Initialization
	2. Model fitting
	Parameters
	Return
	Example

	3. Model transformation
	Parameters
	Return
	Example

	Proceed to GWAS
	Troubleshooting
	Example notebook
	GloWGR notebook for quantitative phenotypes
	GloWGR notebook for binary phenotypes

	GloWGR: Genome-Wide Association Study (GWAS) Regression Tests
	Linear regression
	Example

	Logistic regression
	Example

	Offset
	Example notebooks and blog post
	GloWGR: GWAS for quantitative traits
	GloWGR: GWAS for binary traits
	GWAS with MLflow instrumentation

	Troubleshooting
	Contributing
	Raise Issues
	Join the monthly office hours
	Contribute to the codebase
	1. Modify or add notebooks
	2. Improve the documentation
	3. Add libraries to the glow docker environment
	4. Contribute new features / bug fixes

	Blog Posts
	Introducing GloWGR: An industrial-scale, ultra-fast and sensitive method for genetic association studies
	Achieving High Accuracy and Efficiency with Whole-Genome Regression
	Scaling Whole Genome Regression within Project Glow
	Join us and try whole genome regression in Glow!

	Glow 0.4 Enables Integration of Genomic Variant and Annotation Data
	Ingesting GFF3 Annotation Data
	Schema
	Example: Gene Transcripts and Transcript Exons
	Example Continued: Integration with Variant Data
	Other Features and Improvements
	Try It!

	Glow 0.3.0 Introduces Several New Large-Scale Genomic Analysis Features
	Python and Scala APIs for Glow SQL functions
	Improved variant normalization
	A new transformer to split multiallelic variants
	Parsing of Annotation Fields
	Other Improvements
	Try It!

	Streamlining Variant Normalization on Large Genomic Datasets
	What does variant normalization do?
	Variant normalization in Glow
	The underlying normalization algorithm and its accuracy
	Optional splitting
	Using the transformer
	Summary
	Try it!
	References

	Additional Resources
	Databricks notebooks
	New to Databricks? Try Glow on Databricks for Free!

	External blog posts

	Python API
	Glow Top-Level Functions
	PySpark Functions
	GloWGR
	WGR functions
	GWAS functions

	Hail Interoperation Functions

	Python Module Index
	Index

